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Abstract. Extraction, transformation, and loading (ETL) processes are
used to extract data from internal and external sources of an organi-
zation, transform these data, and load them into a data warehouse.
The Business Process Modeling Notation (BPMN) has been proposed
for expressing ETL processes at a conceptual level. This paper extends
relational algebra (RA) with update operations for specifying ETL pro-
cesses at a logical level. In this approach, data tasks can be automatically
translated into SQL queries to be executed over a DBMS. An extension
of RA is presented, as well as a translation mechanism from BPMN to
the RA specification. Throughout the paper, the TPC-DI benchmark is
used for comparing both approaches. Experiments show the efficiency
of the resulting ETL flow with respect to the Pentaho Data Integration
tool.
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1 Introduction

Extraction, transformation, and loading (ETL) processes extract data from inter-
nal and external sources of an organization, transform these data, and load them 
into a data warehouse (DW). Since ETL processes are complex and costly, it is 
important to reduce their development and maintenance costs. Modeling these 
processes at a conceptual level would contribute to achieve this goal. Since there 
is no agreed-upon conceptual model to specify such processes, existing ETL tools 
use their own specific language to define ETL workflows. Considering this, the 
paper discusses two methods for designing ETL processes. The first one, called 
BPMN4ETL, is based on the Business Process Modeling Notation (BPMN), a de-
facto standard for specifying business processes, which provides a concep-tual and 
implementation-independent specification of such processes, that can be then 
translated into executable specifications for ETL tools. The second is a logical 
model based on Relational Algebra (RA), a formal language that provides a solid 
basis to specify ETL processes for relational databases.
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Running Example. The TPC-DI benchmark [6] is used as running example
throughout the paper, with focuses on the processes that update customers and
their accounts. The benchmark has two phases: Historical Load, and Incremental
Updates. In the former, destination tables are initially empty and then populated
with new data. The OLTP database represents transactional information about
securities market trading and the entities involved, e.g., customers, accounts, and
so on. A CustomerMgmt.xml file represents actions resulting in new or updated
customer and account information. For each action, only the properties involved
in the update are given. For example, a ‘NEW’ action (an insertion of a new
customer) will contain customer identifying information, many properties (e.g.
name, address), and information about the customer’s account. An ‘UPDCUST’
action updates a customer and all her current accounts. For that action, only
the properties used to identify the updated properties of the customer are given.
All actions have at least one related customer, and each account is associated
with a single customer. There are also other related tables (e.g., Prospect list,
Financial Newsware, and so on) that are used by the different processes.

Contributions. The paper discusses the modeling of Slowly Changing Dimen-
sions with Dependencies, that is, the case when updating a SCD table impacts
on associated SCD tables (Sect. 2). As a key contribution, an ETL develop-
ment approach is proposed, which begins with a BPMN4ETL conceptual model
(Sect. 3) translated into RA extended with update operations (Sect. 4) at the
logical level. Common ETL tasks and their extended RA specifications are also
shown. Although BPMN4ETL has been already proposed (see [1,11]), the prob-
lem of modeling SCDs with dependencies using this technique is discussed here
for the first time. Related work is covered in Sect. 7. Experiments over the
TPC-DI benchmark are carried out and results are reported, suggesting that
the above-mentioned approach results in more efficient processes than the ones
produced by BPMN4ETL conceptual model translated into the Pentaho Data
Integration (PDI) tool (Sect. 6). Conclusions are given in Sect. 8.

2 Slowly Changing Dimensions with Dependencies

Slowly Changing Dimensions (SCD) [3,11] are used in a DW to keep the history
of changes that occurs in data sources. Kimball [3] defined seven types of SCD.
With SCDs of type 2, the history of changes is kept by augmenting the schema of
the dimension table with two temporal attributes, called StartDate and EndDate.
The former stores the time when the tuple was inserted into the dimension table.
The latter stores the date when an update of the attribute was made in the
dimension table. In general, a currently valid record has a NULL value or a date
far off into the future as its EndDate. When a tuple is deleted from the source
table, the EndDate attribute of its corresponding tuple in the dimension table
is set to the current date. An additional current indicator attribute, IsCurrent,
contains a Boolean value which is set to True to indicate that a tuple is the
current record corresponding to the natural key.



Fig. 1. Schema of DimA and DimB

This paper (as well as the TPC-DI benchmark) tackles SCDs of type 2 with
dependencies. Such a Slowly Changing Dimension table contains a surrogate
key reference to another dimension table. If an update occurs to the referenced
dimension table, the referencing table must be updated as well. To illustrate
this, the schemas of two dimension tables are defined, namely DimA and DimB,
in Equations 1 and 2. DimB references the surrogate key (SkA) of DimA. DimA
and DimB have ‘natural’ keys PkA and PkB, respectively. When an update occurs
in DimA, the (SkA) value of DimB must be replaced by the most current (SkA)
value in DimA. Below, the general steps of an ETL to update a tuple in DimA
are listed, implementing the dependency stated above.

1. Retrieve the current tuple (the one with IsCurrent = True) from DimA.
2. Rename SkA to SkAOld.
3. Retrieve the maximum SkA value from DimA and increase it by 1.
4. Retire the current tuple from DimA (set IsCurrent and EndDate attributes to

False and the current date, respectively).
5. Insert a new tuple in DimA (set IsCurrent and EndDate attributes to True and

NULL, respectively).
6. Retrieve the corresponding current tuples from DimB. These are the tuples

with IsCurrent and SkA values of True and SkAOld, respectively.
7. Retire the current tuples in DimB (set IsCurrent and EndDate attributes to

False and the current date, respectively).
8. Insert new tuples in DimB (set IsCurrent and EndDate to True and NULL,

respectively).

3 Conceptual BPMN for Slowly Changing Dimensions

The BPMN4ETL conceptual model [1,11], represents ETL processes as a combi-
nation of control and data tasks. Control tasks orchestrate groups of tasks, and
data tasks detail how input data are transformed and output data are produced.
For example, populating a DW is a control task composed of multiple subtasks,
while populating fact or dimension tables is a data task. This section shows how
BPMN4ETL can be applied to handle SCD with dependencies described above
in the TPC-DI benchmark. First, a description of the possible changes is given.

In the TPC-DI benchmark introduced in Sect. 1, changes that occurred in
the data sources before the historical load, are stored in the CustomerMmgt.xml
file. The type of changes can be: (a) NEW, where a new customer is inserted,
always associated with a new account; (b) ADDACCT, where one or more new
accounts are associated with an existing customer; (c) UPDACCT, which updates
the information in one or more existing accounts; (d) UPDCUST, which updates
existing customer’s information; (e) CLOSEACCT, which closes one or more exist-
ing accounts; (f) INACT, which sets the status of an existing customer, and her



associated active accounts, to “inactive”. Note that for UPDCUST and INACT
actions, no account fields are included in the file. Updates over the dimensions
DimCustomer and DimAccount are not only present during the incremental load,
but also in the historical load. The DimAccount table has a surrogate key that
references the surrogate key (Sk CustomerID) of the DimCustomer table. These
two tables are modelled as type 2 SCDs with dependencies.

Figure 2 shows the conceptual design of the UPDCUST action for the his-
torical load. Initially, an Add Column task updates the phone attributes of the
sources. The next five tasks (Lookup, Update Column, Drop Column, Lookup and
Add Column), implement the updates specified in the TPC-DI benchmark specifi-
cations. Note that Status is set to “active” in the Add Column task to indicate that
an updated customer is still active. Since DimCustomer is a SCD-type 2 table,
upon updating a customer record, a new Sk CustomerID value must be inserted
for the new current tuple. Thus, the current Sk CustomerID value will not refer
to the correct value in the DimAccount table anymore. Further, the only link to
DimAccount is the Sk CustomerID value of the current DimCustomer record. Thus,
a lookup is performed using the customer identifier, followed by a Rename Column
task that renames the current Sk CustomerID attribute to Sk CustomerIDOLD.
In the next Add Column task, the maximum Sk CustomerID value of DimCus-
tomer is retrieved and incremented by one, becoming the Sk CustomerID for the
new tuple. This is followed by an Update Data task that sets the IsCurrent and
EndDate values of the current tuple in DimCustomer to ‘False’ and ‘ActionTS’
(the action timestamp) respectively. Then the new tuple is inserted into DimCus-
tomer, with IsCurrent and EndDate values to ‘True’ and ‘9999-12-31’ respectively.
Now, all the accounts of the updated customer must be updated, setting the new
value of Sk CustomerID. These accounts are found through a Lookup task with
the Sk CustomerIDOLD value that has been saved in the flow. This value is
matched with the Sk CustomerID value of DimAccount. After this, the current
tuple of this account in DimAccount, for this customer, is logically deleted, by
setting the IsCurrent and EndDate values to ‘False’ and ‘ActionTS’, respectively,
using an Update Data task. Since a rule in the TPC-DI specification document
requires that there must be at most one update to a ‘natural’ key record on
any given day (even when the source data contains more than one update), a
tuple is only deleted if the EffectiveDate value is not equal to the ActionTS value
(which will become the EndDate of the deleted tuple). Otherwise, another Update
Data task sets their Sk CustomerID value to the new Sk CustomerID value in the
flow. Then, an Add Column task adds the Sk AccountID column to the flow. The
row number value of each tuple is added to the maximum Sk AccountID value
since more than one account could belong to the same customer being updated.
Finally, an Insert Data task inserts the tuples in DimAccount.

4 An Extended Relational Algebra for ETL Processes

This section presents an extended RA that can be used for implementing ETL
processes. RA can be used to automatically generate SQL queries to be exe-
cuted in any Relational Database Management System (RDBMS). The typical



Fig. 2. BPMN4ETL design for updating a customer (SCD type 2 table).

RA operations are shown on the left-hand side of Fig. 3. A description of these
operations can be found in classic database literature. In order to model differ-
ent scenarios of ETL processes, these operations are extended with additional
operators as indicated on the right-hand side of the figure, and detailed next.

– Aggregate: Let F be an aggregate function such as Count, Min, Max, Sum, or
Avg. The aggregate operator AA1,...,Am|C1=F1(B1),...,Cn=Fn(Bn)(R) partitions
the tuples of R in groups that have the same values of attributes Ai and
computes for each group new attributes Ci by applying the aggregate function
Fi to the values of attribute Bi in the group, or the cardinality of the group
if Fi(Bi) is Count(∗). If no grouping attributes are given (i.e., m = 0), the
aggregate functions are applied to the whole relation R. The schema of the
resulting relation has the attributes (A1, . . . , Am, C1, . . . , Cn).

– Delete: The delete operation, denoted by R ← R − σC(R), removes from
relation R the tuples that satisfy the Boolean condition C.

– Extend: Given a relation R, the extension operation, denoted EA1=Exp1,...,

An=Expn
(R), returns a relation where each tuple in R is extended with new

attributes Ai obtained by computing the expression Expi.



Fig. 3. Relational Algebra operators (left). Extended relational operators (right).

– Input: This operation, denoted by R ← IA1,...,An
(F ) returns a relation with

schema R(A1, . . . , An) that contains a set of tuples constructed from the
content of the file F .

– Insert: Given two relations R and S, this operation, denoted R ← R ∪ S,
adds to R the tuples from S. When a new relation R is created with the
contents of S, the operation is denoted R ← S. Also if the two relations have
different arity, the attributes of the second relation must be explicitly stated
as, e.g., R ← R ∪ πB1,...,Bn

S.
– Lookup: The lookup operation is given by R ← πA1,...An

(R1 ��C R2), where
the join operation can be any of the six types in Fig. 3.

– Remove Duplicates: This operation, denoted δ(R), returns a relation that
contains the tuples of R without duplicates.

– Rename: This operation is applied over relation names or over attribute
names. For the former, the operation is denoted by ρS(R), where the input
relation R is renamed to S. For attributes, ρA1←B1,...,An←Bn

(R), returns a
relation where the attributes Ai in R are renamed to Bi, respectively.

– Sort: This operation, denoted τA(R), sorts a relation that contains the tuples
of R sorted by the attribute A .

– Update Column: This operation, denoted UA1=Expr1,...,An=Exprn|C(R),
returns a relation where for each tuple in R that satisfies the Boolean condi-
tion C, the value of the attribute Ai is replaced, respectively, by the value of
Expri.

– Update Set: Denoted R ← U(R)A1=Expr1,...,An=Exprn|C(S), this operation
updates tuples in R that correspond to tuples in S that satisfy the Boolean
condition C. The value of attribute Ai is replaced by the value of the expres-
sion Expri. Unlike the Update Column operation, the condition of the Update
Set operation includes matching the tuples of two relations.

Figure 4 shows how tasks in the BPMN4ETL methodology can be translated
into RA. For example, the Aggregate Data task is translated as an Aggregate
operation. The Drop Column operation is specified in RA as a projection of all
columns except the removed ones (in this case, An and An−1). The Update Data
task is translated as an Update Set operation with matching attributes explicitly
stated in the condition.



Fig. 4. Translation of BPMN4ETL tasks to RA operations.

5 Relational Algebra Specification for Type 2 SCDs with
Dependencies

The implementation in RA of the process described in the running example,
is shown in Fig. 5. Variable Temp0 holds all tuples except for the ones with
ActionType =‘NEW’, and Temp1 holds the tuple pointed to by a cursor from
Temp0 at any particular time. For the sake of space, only the part concerning
SCDs will be explained (Eqs. 13 through 24). Equations 13 and 14 obtain the
Sk CustomerID of the current customer tuple in DimCustomer, and rename it to
Sk CustomerIDOLD, to keep the current surrogate key of DimCustomer in the
flow, for the reasons already explained. Equations 15–16 add Sk CustomerID to
the flow (the new surrogate key value is computed by adding 1 to the maximum
Sk CustomerID value in DimCustomer). The corresponding current tuple in Dim-
Customer is then “deleted” (Eq. 17). Then, the remaining columns needed are
added (Eq. 18), and the tuple is inserted into DimCustomer (Eq. 19). After this,
all current accounts of the customer are obtained (Eq. 20) and “deleted” (by
setting, e.g., IsCurrent as ‘False’, in Eq. 21). Again, only one tuple is inserted, for
accounts such that EffectiveDate �= ActionTS. For accounts with EffectiveDate =
ActionTS, only their Sk CustomerID values are updated (Eq. 22). Finally, Eq. 23
adds Sk AccountID to the flow. This is the maximum Sk AccountID in DimAc-
count plus the rownumber() value of each current account tuple. Finally, the
tuples are inserted into DimAccount (Eq. 24).

6 Performance Evaluation

This section briefly describes and reports results of the experimental evaluation
on the TPC-DI benchmark described in Sect. 1. The benchmark contains one
historical load and two identical incremental loads. Data sources are of different
formats (xml, csv, txt, and so on). The experiments implement the historical and
incremental loads in two ways: (a) Using PDI1, translating the BPMN4ETL
1 https://github.com/pentaho/pentaho-kettle.

https://github.com/pentaho/pentaho-kettle


Fig. 5. RA expressions to model the historical load for an updated customer

specification directly into PDI; (b) Translating the BPMN4ETL specification
into RA, and then implementing the RA operations using Postgres PLSQL.

To optimize the performance of the PDI implementation, the PDI perfor-
mance tuning tips were applied2. The PDI memory limit was increased from
2G to 4G in order to avoid java out of memory exceptions and improve perfor-
mance. Both tests were run over an Intel i7 computer, with a RAM of 16 GB,
running the Windows 10 Enterprise operating system, using the PostgresSQL
database as the DW storage. The total execution times of the processes, for dif-
ferent scales factors, are reported in Table 1. For scale factor 3, the benchmark
processes 4.5 million records. For scale factors 5 and 10, the benchmark processes
7.8 and 16.1 million records, respectively. It can be noticed that for the historical
load, PLSQL implementation is orders of magnitude faster, for all scale factors.
Differences are also relevant for incremental loads.

2 https://help.pentaho.com/Documentation/7.1/0P0/100/040/010.

https://help.pentaho.com/Documentation/7.1/0P0/100/040/010


Table 1. Results of implementing TPCDI with relational Algebra (PLSQL) and PDI
in Hours.Minutes.Seconds

Historical Incremental 1 Incremental 2

SF-3 PLSQL 00:12:50 00:00:09 00:00:07

PDI 11:23:52 00:01:32 00:01:40

SF-5 PLSQL 00:22:31 00:00:15 00:00:14

PDI 20:25:32 00:03:03 00:03:11

SF-10 PLSQL 02:11:15 00:00:39 00:00:36

PDI 25:08:13 00:11:35 00:12:38

These results are partially explained by the poor performance of PDI when
it comes to implementing loops, needed for updates of the SCDs with dependen-
cies. Except for the ‘NEW’ action type, which is loaded in batch form, all other
action types are loaded using loops, one row at a time. PDI handles loops with
the Copy Rows to Result step, that stores the rows in memory and retrieves them
one row at a time. It takes PDI about 15 h out of the total running time for the
historical load of scale factor 5, to finish running the DimCustomer and DimAc-
count dimension tables due to this loop. The same applies to the DimCompany
and DimSecurity tables. Also, in spite of the tips applied to improve performance
mentioned above, certain steps that cause slow execution could not be avoided.
For example Merge Join Steps required input data to be sorted in advance in
PDI. This slows the ETL flow since the complete results of the sorted input data
had to be obtained prior the execution of the update process.

To conclude, the results reported here suggest that the alternative of imple-
menting ETL SQL-based processes based on a translation from a RA specifica-
tion is plausible and competitive.

7 Related Work

Several different strategies have been proposed to model ETL processes. The
conceptual model proposed in [12] analyzes the structure and data of the data
sources and their mapping to a target DW. The conceptual model proposed
in [10], uses UML to design ETL processes, where each ETL process is repre-
sented by a stereotyped class. This model is refined in [4]. The work in [1,2] pro-
poses a vendor-independent conceptual metamodel for designing ETL processes
based on BPMN, which combines two perspectives, a control process view, and
a data process view. Using BPMN to specify ETL processes makes this model
simple and easy to understand at the cost of expressiveness: it is not possible
to visualize the transformation of attributes and attribute constraints at any
point in the workflow. Relational algebra was first used to model ETL processes
in [7–9]. ETL processes for slowly changing dimensions specifications [7], data
quality enforcement tasks [8], and ETL conciliation tasks [9] were modelled with
relational algebra and applied to a real-world ETL scenario. Finally, relevant to



the work presented here, a research reported in [5] presents a framework for ETL
development based on writing software code, instead of specifying the process
using commercial tools like PDI, Integration Services, etc., and discusses the
advantages of this approach.

8 Conclusion

This paper proposed RA as a language to specify ETL processes at the logical
level. To illustrate the proposal, and show the plausibility of the approach in
real-world scenarios, the TPC-DI benchmark was used in two ways: one, using
RA to translate the BPMN4ETL specification of the benchmark into SQL. The
other one implements the benchmark using BPMN4ETL, and translates this
directly into the PDI tool. The experiments showed that the SQL implementation
runs orders of magnitude faster than that of PDI. This work did not consider
structural changes of the data sources, which will be addressed in future research.
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