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ABSTRACT 

Common spatial patterns analysis (CSP) and linear discriminant 

analysis (LDA) are widely used techniques for spatial filtering and 

classifying in motor imagery (MI). However, CSP is very sensi-

tive to noise and artifacts.  

A method to detect and eliminate anomalous electroencephalo-

gram (EGG) signals before applying CSP is presented. An outlier 

score of the signal is obtained by calculating the similarities with 

the other signals of the sample through the Bounded Coordinate 

System (BCS). Besides, it is proposed to replace the usual estima-

tors of mean, covariance and scale, used in the algorithms, by 

Olive and Hawkins estimators to get robust versions of BCS and 

CSP. 

The assumption done in LDA that the covariance of each of the 

classes in MI are identical may not be true; if it is not satisfied, it 

is better to use quadratic discrimination. Tests to verify this hy-

pothesis and decide which discriminant function must be used are 

considered. 

The performances of the methods are evaluated and compared on 

EGG data from BCI competition datasets; results show that robust 

methods outperformed classical techniques, especially for subjects 

with poor classification accuracy. 

CCS Concepts 

• Applied computing ➝ Bioinformatics 
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Brain computer interface; motor imagery; robustness; bounded 
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1. INTRODUCTION 
Motor imagery is a neural activity produced when a subject volun-

tarily imagines making a movement, eg. right hand movement. 

Imagining a movement produces neural activity that is spatio-

temporally similar to the activity generated during real movement. 

It is used as a technique to enhance motor learning and to improve 

neurological rehabilitation in patients after stroke. Repeated 

practice of MI can induce plasticy changes in the brain [1].  

In MI based on Brain-Computer Interface (BCI), the electro-

encephalogram signals are recorded while the patient imagines 

various types of movements. The characteristics used to quantify 

the EEG activity are extracted; subsequently classifiers are 

applied to discriminate between two or more movements 

imagined; finally each type of activity is assigned to a particular 

control signal. 

EEG signals are widely affected by a variety of contaminations or 

artifacts, such as loose electrodes, eye movement and blink, heart 

and muscle activity, head and body movement as well as external 

interference due to power sources [2]. Since the shape of the 

neuro-logical phenomenon is affected, artifacts can reduce the 

performance of BCI-based systems. Noise reduction methods and 

outlier detection aims to find anomalies in the data and remove or 

downweigh their influence. The use of methods that consider 

these facts will provide more robust systems.  

The multichannel EEG signals can be seen as multivariate time 

series (MTS). The distance-based algorithm proposed by Wang [3] 

for detecting outlying samples in MTS datasets can be applied to 

remove signals with artifacts. It is based on the Bounded Coordi-

nate System technique, introduced by Huang et al. [4], which is 

used to compute the distance between two MTS samples. Then, 

the outlier score of a signal is calculated to find the top outlying 

MTS samples and later to eliminate them. 

Common spatial patterns analysis [5] is a supervised method 

which is successful calculating spatial filters that extract discrimi-

native activity and reduce feature dimensions in motor imagery 

BCI. It projects multichannel signals into a subspace, where the 

differences between classes are emphasized and the similarities 

are minimized. CSP is sensitive to outliers because it involves 

sample covariance estimates. Yong et al [6] proposed a robust 

version of the CSP algorithm using the minimum covariance 

determinant to estimate the covariance matrices and the median 

absolute deviation to estimate the variance of the projected EEG 

signals. Another robust estimators of covariance, such as Stahel-

Donoho and MM- estimators were used in [7] to robustify CSP. 

Linear Discriminant Analysis [8], a simple classifier that provides 

acceptable accuracy without high computation requirements, has 

been used successfully in numerous BCI systems. However, it 

assumes the equality of the covariance matrices of the classes, 

which is not always a true hypothesis; in that case it should be 

used Quadratic Discriminant Analysis (QDA) [9].  

This paper presents algorithms to process and classify EEG 

signals that combine several robust methods. First the anomalous 

signals of the sample are detected and eliminated, later with the 

resulting signals, a robust CSP algorithm is applied using the 
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Olive and Hawkins estimator [10] for the covariance matrix. Once 

the features of each class have been extracted, a test is applied to 

determine if their covariance matrices are equal or not, and a 

classifier is constructed using LDA or QDA as appropriate. 

Section 2 will provide the methods to detect and eliminate the 

anomalous signals and to classify the non-discarded ones. In 

Section 3 the dataset used to compare the performance of the 

proposed techniques is presented and the way in which it is pro-

cessed is explained. Results will be shown in Section 4 and the 

conclusions will be established in Section 5. 

2. METHODOLOGY 
In BCI design the goal is to process the EEG signal to translate 

into the mental state of the user. Lotte [11] presented the general 

architecture of an EEG signal processing system for BCI, whose 

two main steps are feature extraction and classification. 

Let   *       +  be a sample of   training EEG trials co-

rresponding to two different mental states (classes 1 and 2), where 

    
    is the data matrix which corresponds to a trial    (  

     ) of imaginary movement, with   the number of obser-

vations in each trial and   the number of channels; each    can be 

considered as a MTS. 

2.1 MTS Outlier Detection 
The outlier detection in MTS dataset is to find top outlying MTS 

samples that have the largest outlier scores. Wang [3] proposed a 

distance-based algorithm where the Bounded Coordinate System 

is used to compute the similarity between two MTS samples. 

The BCS method characterizes a multidimensional point set by 

the mean value of elements and a few top ranked principal com-

ponents bounded by two furthermost projections. In this coordi-

nate system, each of its coordinate axes is identified by the Princi-

pal Components [12] and bounded by the range of data projec-

tions along the axis. Principal Components only indicate the direc-

tions of coordinate axes; its corresponding Bounded Principle 

Component (BPC) identifies a line segment bounded by two 

furthermost projections on it. To capture the data information 

more accurately and avoid the negative effect of noises, the length 

of BPC can be redefined by the standard deviation of data projec-

tions. 

Given a matrix        such that   (       )  with 

   (         )
  (       ), its representation is    ( )  

(    ̈ 
     ̈ 

 ), where    is the vector of means for all    and 

 ̈  is the BPC for   . The length of the bounded principal compo-

nent || ̈ || is    , where    is the average distance from the origin 

of coordinate system (the mean   ) to a projection on the princi-

pal component    (see details in [3], [4]). 

2.1.1 Robust BCS 
Principal component analysis (PCA) [12] uses an orthogonal 

transformation to convert a set of observations of possibly corre-

lated variables into a set of values of linearly uncorrelat-

ed variables called principal components. PCA can be done 

by eigenvalue decomposition of the data covariance matrix after 

mean centering.  

The sample mean and sample covariance are sensitive to outliers 

and therefore highly non-robust; they can be replaced by the 

highly outlier-resistant OH estimators of multivariate location and 

dispersion proposed by Olive and Hawkins [10]. These OH esti-

mators are obtained by first generating trial estimates and then 

using a concentration technique from each trial fit to obtain attrac-

tors (see details in [10], [13]). 

Standard deviation is a measure of the average distance of data 

points from their mean; it is also sensitive to outliers. The median 

absolute deviation (MAD) [14] is a robust measure of the variabil-

ity of a univariate sample of quantitative data.  

A robust version of BCS (   ̃) can be constructed by obtaining 

the principal components from the OH covariance estimator, and 

then by replacing the vector of means with the OH location esti-

mator and using the MAD of the principal component projections 

to get the length of the components. 

2.1.2 Outlier Score 
The similarity between two MTS can be measured by comparing 

their corresponding BCS. A modified version of the distance 

between two MTS, defined by Wang, can be obtained by replac-

ing their corresponding BCS with their robust versions. Given two 

MTS samples        and        and their corresponding 

robust BCS representations    ̃( )  ( ̃   ̃ 
     ̃ 

 )  and 

   ̃( )  (    ̃ 
     ̃ 

 ), the distance between them is com-

puted by: 

    .   ̃( )    ̃( )/  ‖ ̃
   ̃ ‖  ∑‖ ̃ 

   ̃ 
 ‖

 

   

  

where ‖ ‖ is the Euclidean norm. 

Let   be a MTS dataset whose cardinality is | |,     a pa-

rameter such that      | |     The outlier score for       
is defined as: 

  ( )  
 

 
∑     (    )

 

   
     ( )

 

where   ( ) denotes the set of the   nearest neighbors of   in   

according to the      distance. This score represents the degree of 

outlierness for each sample. 

2.1.3 Identification of Outliers 
A way for labeling outliers is the interquartile range method de-

veloped by Tukey [15]. In this context, it only interests to elimi-

nate the signals with large outlier scores. Thus, the anomalous 

signals will be those whose scores exceed in value the upper cut-

off point    , given by: 

           (     )  

where    and    are the sample quartiles of the signals’ outlier 
scores. 

A modification of the previous is the median rule ([16], [17]), 

which upper cut-off point      is given by: 

            (     )  

where    is the sample median of the signals’ outlier scores. 

Let    the set of trials in   belonging to the class   (     ). 

For each class  , let      and   be a given number such that 

    | |   . For each     , the outlier score   (  ) is 

calculated; then the sample    is considered an outlier if   (  )  

  , where    is the upper cut-off point     or     . The set 

 ̃     is constructed with the no outliers samples in  . 
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2.2 Feature Extraction 
One way to extract features from multiple EEG channels is to use 

spatial filtering, for example CSP [5], which performs a linear 

combination of EEG signals for enhancing signals coming from a 

particular area of the brain. 

2.2.1 Robust CPS 
CSP yields a decomposition of the signal parameterized by a 

matrix       . Let     
    the covariance matrix of the 

band-pass filtered signals in  ̃   (     ) .   projects signal 

       in the original sensor space        
 , where the   

spatial filters (rows of  )     
  (       ) maximize the 

Rayleigh quotient  ( )            ⁄ . 

The vector   in  ( ) can be achieved by solving the generalized 

eigenvalue problem           Then the matrix   in      

consists of   generalized eigenvectors   , which have associated 

eigenvalues    (       ). 

Let  ̃   ̃   ̃  and  ̃  | ̃| ( ̃   ). For a given trial matrix 

    ̃, the normalized sample covariance matrix is obtained as: 

     
   tr(  

   )⁄  , 

where    is the matrix    after centering and scaling it (  

     ̃)  For each class   (     ) an estimator of    is com-

puted by averaging the covariances matrices of each trial as: 

 ̂  
 

| ̃ |
∑   
   ̃ 

   

Such computation of covariance matrices assumes that the signals 

have zero mean, which is true in practice for band-pass filtered 

signals.  

One way to make the CSP robust is to replace the covariance 

estimators with a robust version, such as the OH estimators. Then, 

replacing  ̂  by the robust  ̃ , a matrix  ̃  will be generated as 

output. 

2.2.2 Feature Selection 
The classical measure for the selection of CSP filters is based on 

the previous eigenvalues; the   filters (    )  corresponding 

to the   largest and the   lowest eigenvalues are used.  

Each eigenvalue is the relative variance of the signal filtered with 

the corresponding spatial filter. This measure is not robust to 

outliers if it is based on simply pooling the sample covariance 

matrices in each class. A simple way to fix this issue was pro-

posed in [18] using a score, where the ratio of medians of the 

variance of the filtered signal within each trial is calculated as: 

     ( )      (         )⁄   

with                 ̃ [var(   )] (     ) . Then, the   

filters corresponding to the   largest and the   lowest scores are 

used. 

Let   *                    }  the set of such filters. A 

CSP feature    for a signal   is defined as: 

     (  
      )    ,var(   )-, 

for      (       ). Using any of the previous techniques, 

the vector    [        ] of features is found for each signal 

    ̃, generating the set    *       ̃ +. 

2.3 Classification 
A preliminary test of equality of covariance matrices is often used 

in discriminant analysis to decide whether linear (LDA) or quad-

ratic discriminant analysis (QDA) should be applied in a given 

problem. Unlike LDA, in QDA there is no assumption that the 

covariance of each of the classes is identical. 

Box [19] proposed a likelihood-ratio test (LRT) statistic for test-

ing the hypothesis of equal covariance matrices. However, in the 

high-dimensional setting, where the dimension can be much larger 

than the sample size, the conventional testing procedures such as 

the LRT either perform poorly. Cai et al [20] developed a test that 

is powerful against sparse alternatives and robust with respect to 

the population distributions. 

For each    in the sample  ̃  (       ̃), the features vector 

     is obtained. Let    the set of these vectors in   whose 

signals are in class  (     ), and let  ̆  and  ̆  be the sample 

mean and covariance obtained with the data in   .  

For a new signal     (      ), let    be the probability that 

the signal   to classify belongs to class   and   be the features 

vector for    Let  ̆ be the within groups covariance matrix given 

by the pooled version of the different scatter matrices  ̆  
∑    ̆ 
 
     

  is assigned to class   for which   ( )            ( )  where 

  
 ( )  (      ̆ )

  ̆  (      ̆ )        in the case of LDA, 

or   
 ( )  (      ̆ )

  ̆ 
  
(      ̆ )     [   ( ̆ )]        

in the case of QDA. 

3. NUMERICAL EXPERIMENTS 
3.1 Dataset 
In order to compare the performance of the different techniques 

presented, a dataset of motor imagery EEG signals of BCI compe-

tition was used. The dataset was collected in a multiclass setting 

with the subjects performing more than two different MI tasks, 

however, the algorithms were evaluated on two-class problems by 

selecting only signals of left and right hands MI trials.  

The data [21] were recorded using 22 electrodes from 9 subjects 

who performed left-hand, right-hand, foot and tongue MI. The 

training and testing sets contain 72 trials for each class. 

3.2 Data Processing 
The EEG signals were band-pass filtered in 8-30 Hz, using a 5th 

order Butterworth filter. For each trial, the features were extracted 

from the time segment located from 0.5s to 2.5s after the cue 

instructing the subject to perform MI. The Regularized Common 

Spatial Pattern (RCSP) toolbox [22] was adapted to process the 

signals. 

Let   be the set of the filtered signals of the training set and   be 

the set of the filtered signals of the testing set. The anomalous 

signals in   were detected and eliminated (step 1) and the subset 

 ̃    of the no outliers signals were used to extract the set of 

features   (step 2). Each signal in   is classified (step 3) and the 

subjects’ performances were calculated. 

4. RESULTS  
The dataset was processed in the way explained in the previous 

section. The performances for the classic CSP using all the signals 

in the training set with     pairs of spatial filters combined with 

LDA (CSP+LDA) (e.g. [18]), denoted by CSP, are reported to 

compare them with those of the others methods. 
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In step 1, the number   nearest neighbors was varied between 1 

and 71. In step 2, although in the BCI literature the usual number 

of features considered is between 2 and 6, the number of pairs   

was varied between 1 and 11. In step 3, the classification of the 

testing signals was done using LDA (Table 1), QDA (Table 2) or 

choosing the discriminant function through the tests of Box (Table 

3) or Cai et al (Table 4) with significant level 0.05 for both tests. 

Tables 1 to 4 show only the best performance for the method 

studied for each of the subjects    (       ) (i.e. the perfor-

mance for values of    and   which give the best accuracy when 

classifying the signals of the testing set).  

The notation          used is the following:    = W if Wang's 

technique was used to obtain the outlier scores or   = O if the 

outlier scores were obtained as in Section 2.1.2;   = t if the iden-

tification of outliers were done using the upper cut-off point given 

by the method of Tukey or   = m  if the median rule is applied; 

  = C if CSP was based on sample covariance matrix or    = R if 

the robust CSP of Section 2.2.1 is used;   = e if the features were 

selected using extreme eigenvalues or    = s if scores were con-

sidered. 

The results show that the elimination of the anomalous signals 

before the extraction of features during the learning leads to a 

better classification for all subjects. 

The use of the upper cut-off point obtained with the median rule 

produces better accuracies than those with Tukey's in most cases.  

For almost all subjects, the performances are better if the filters, 

obtained with classic CSP, are selected using the extreme scores 

and the linear discrimination function is considered. 

The feature extraction using robust CPS only produces better 

results for some subjects. This may be due to the fact that the 

samples used at this stage are non-outliers seen as MTS, and 

therefore, the possibility of anomalous observations within such 

signals is reduced; if the data has Gaussian distribution, the sam-

ple mean and covariance are the most efficient estimators [23]. 

The discriminant function that gives the greatest accuracy depends 

on the subject, as it can see by comparing the Tables 1 and 2. 

Tables 3 and 4 show that the application of test of Cai et al gives 

performances similar or superior to those obtained with Box's test, 

although, in some cases, the decision of the test does not deter-

mine the most convenient discriminate function. 

5. CONCLUSIONS  
In this paper are presented outliers resistant methods to classify 

EEG signals from motor imagery experiments. The methods are 

evaluated on MI data by comparing their accuracies when classi-

fying with those obtained with the standard method of CSP com-

bined with LDA. 

The elimination of anomalous signals before the extraction of 

characteristics, the use of robust estimators of mean, covariance 

and scale, together with the selection of the appropriate discrimi-

nant function, produces better results than with CSP+LDA. 

Future work could be the development of techniques to automati-

cally determine the values of the parameters   (number of neigh-

bors used when calculating the outlier scores) and   (number of 

pairs of spatial filters). 

 

Table 1. Best classification accuracies using LDA (for each 
subject, the best result is displayed in bold characters) 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 

CSP 88,9 51,4 96,5 70,1 54,9 71,5 81,3 93,8 93,8 

WtCe 91,0 57,6 96,5 78,5 64,6 71,5 84,0 97,2 93,8 

WmCe 91,7 56,3 96,5 77,1 66,0 71,5 84,0 97,2 93,8 

OtCe 91,7 58,3 97,9 79,2 64,6 70,1 82,6 97,2 93,8 

OmCe 92,4 58,3 97,9 79,2 64,6 70,1 83,3 96,5 93,8 

OtCs 93,8 60,4 97,9 79,2 63,2 70,1 81,9 96,5 94,4 

OmCs 93,8 60,4 97,9 80,6 63,9 70,1 84,0 96,5 94,4 

OtRe 88,9 60,4 97,2 72,2 68,8 74,3 75,7 97,9 92,4 

OmRe 88,9 59,0 97,2 72,2 63,9 74,3 75,7 97,9 92,4 

Table 2. Best classification accuracies using QDA (for each 
subject, the best result is displayed in bold characters) 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 

CSP 88,9 51,4 96,5 70,1 54,9 71,5 81,3 93,8 93,8 

WtCe 91,0 56,3 94,4 79,9 65,3 68,1 84,0 95,8 93,8 

WmCe 91,0 56,3 94,4 77,1 65,3 68,1 84,0 95,8 93,8 

OtCe 91,0 56,3 96,5 79,2 64,6 69,4 82,6 95,1 93,1 

OmCe 88,9 56,3 96,5 79,2 65,3 69,4 84,7 95,8 93,1 

OtCs 88,2 59,7 95,8 75,0 56,9 68,8 80,6 94,4 93,8 

OmCs 88,9 56,3 95,1 75,0 56,9 73,6 81,9 95,8 93,8 

OtRe 89,6 57,6 96,5 72,2 65,3 71,5 76,4 97,9 90,3 

OmRe 88,9 57,6 95,1 70,1 66,0 71,5 75,7 97,9 89,6 

Table 3. Best classification accuracies using the classifier 
determined by Box’s test (for each subject, the best result is 

displayed in bold characters) 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 

WtCe 89,6 57,6 96,5 77,8 65,3 68,8 83,3 96,5 93,8 

WmCe 91,0 56,3 95,8 77,1 65,3 70,1 84,0 95,8 93,8 

OtCe 91,0 56,3 97,9 79,2 64,6 69,4 82,6 96,5 93,1 

OmCe 88,9 56,3 96,5 79,2 65,3 68,8 83,3 96,5 93,1 

OtCs 88,2 60,4 96,5 79,2 59,7 70,1 81,9 95,8 94,4 

OmCs 93,8 56,3 96,5 80,6 63,9 70,1 84,0 95,8 94,4 

OtRe 89,6 57,6 96,5 72,2 68,8 74,3 75,7 97,9 91,0 

OmRe 88,9 57,6 96,5 70,8 63,9 74,3 75,7 97,9 91,0 

Table 4. Best classification accuracies using the classifier 
determined by Cai’s test (for each subject, the best result is 

displayed in bold characters) 

  S1 S2 S3 S4 S5 S6 S7 S8 S9 

WtCe 91,0 57,6 96,5 78,5 64,6 71,5 84,0 97,2 93,8 

WmCe 91,0 56,3 96,5 77,1 66,0 71,5 84,0 97,2 93,8 

OtCe 91,0 56,3 97,9 79,2 64,6 70,1 82,6 97,2 93,8 

OmCe 88,9 56,3 97,9 79,2 64,6 68,8 83,3 96,5 93,8 

OtCs 93,8 60,4 97,9 79,2 63,2 70,1 81,9 96,5 94,4 

OmCs 93,8 59,0 97,9 80,6 63,9 70,1 84,0 96,5 94,4 

OtRe 89,6 60,4 97,2 72,2 68,8 74,3 75,7 97,9 92,4 

OmRe 88,9 59,0 97,2 72,2 63,9 74,3 75,7 97,9 92,4 

 

The proposed methods show more accuracy in the classification 

which leads to obtain neurophysiologically more relevant spatial 

filters. This would allow to extend the use of the BCI, increasing 
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its reliability and reducing the recognition of erroneous mental 

commands from the user. 
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