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h i g h l i g h t s

• An informational plane describing the correlation and probability shape of a signal.
• The insensibility to the probability distribution of the BP symbolization is shown.
• Two examples are presented and our plane gives a deeper understanding of them.
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a b s t r a c t

The aim of the contribution is to introduce a novel information plane, the causal-amplitude
informational plane. As previous works seems to indicate, Bandt and Pompe methodology
for estimating entropy does not allow to distinguish between probability distributions
which could be fundamental for simulation or for probability analysis purposes. Once a
time series is identified as stochastic by the causal complexity-entropy informational plane,
the novel causal-amplitude gives a deeper understanding of the time series, quantifying
both, the autocorrelation strength and the probability distribution of the data extracted
from the generating processes. Two examples are presented, one from climate change
model and the other from financial markets.

1. Introduction

The dynamical behavior of a complex system is usually recorded as a time series (TS). One important task is to understand
the nature (i.e. linear, chaotic, periodic, stochastic, etc.), alongwith others features that can helpmodeling the data generator
process of the time series at hand. The use of quantifiers based on Information Theory has led to interesting results regarding
the characterization of nonlinear chaotic dynamics, improving the understanding of their associated time series. Permutation
Entropy (PE), which is a information theory quantifier, that has the same functional form as Shannon Entropy [1] but uses,
in order to estimate the required probabilities, the symbolic methodology proposed by Bandt and Pompe [2] that reveals
internal nonlinear causality, understood as autocorrelation, for a given time series.

In [3–7] was found that the use of the Permutation Entropy and the Statistical Complexity in an informational plane is very
useful to distinguish between chaotic (i.e. deterministic) and stochastic dynamics. But once this discrimination is completed,
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it is time to look for a better understanding by analyzing the distribution of the data. In this manner, several contribution
were presented before, in [3,8] PE was applied for general non Gaussian 1/f α noise and the fractional Brownian motion
and, in [9], theoretical curves for the PE of the fractional Brownian motion and fractional Gaussian noise were developed.
In [3] PE was applied in general non Gaussian stochastic processes, and therefore no knowledge about their moments were
obtained in order to compare with chaotic time series, and in [8] PE was applied in Gaussian time series. At this point the
following question arise: Is the Bandt and Pompe methodology useful to characterize the shape of the marginal probability
distribution of a stochastic process? This is the question this paper addresses by means of simulating Gaussian and non-
Gaussian autoregressive processes of order 1 and comparing their Shannon Amplitude Entropy (i.e. the Shannon Entropy of the
histogram of the data) and Shannon Permutation Entropy. Autoregressive processes are simulated within this paper because
both the associate correlation structure and the probability distribution are well established and the correlation structure
is easily manipulable through the correlation parameter. Although Gaussian autoregressive processes are well known [10],
this is not the case of non Gaussian autoregressive processes. However, the later impacts in diverse fields of science and
technology as diverse as random number generators [11], modeling irregularly spaced transaction financial data [12], foreign
exchange rate volatility modeling [13], studying nervous systems mechanism (Spike sorting) [14] and speech signal analysis [15]
among others, inciting their study. The determination of the Probability Density Function (PDF) of the data generator process
is a fundamental task in several areas like simulation modeling where a real time series should be reproduce numerically.

The paper reads as follows: Section 2 presents a brief introduction to Permutation Entropy and Amplitude Entropy and the
stochastic processes simulated, Section 3 presents numerical results of the application of the entropies over the simulated
stochastic processes, Section 4 is devoted to present some application cases and finally Section 5 is a discussion about the
results.

2. Information quantifiers

A brief introduction to the entropy quantifiers considered within this paper is presented in order to make this paper
self-contained. Given a continuous probability distribution function (PDF)–f (x)–the entropy of this distribution is given by:

S[f ] = −

∫
1

f ln(f ) dx, (1)

and is a measure of global character that it is not too sensitive to strong changes in the distribution taking place on a small-
sized region. Let now P = P(i) = {pi; i = 1, . . . ,N}, with

∑N
i=1pi = 1, be a discrete PDF, with N the number of possible

states of the system under study. In the discrete case, we define a ‘‘normalized’’ Shannon entropy (0 ≤ H ≤ 1) as

H[P] = S[P]/Smax =

{
−

N∑
i=1

pi ln(pi)

}/
Smax, (2)

where the denominator Smax = S[Pe] = lnN is that obtained by an uniform probability distribution Pe = {pi = 1/N, ∀i =

1, . . . ,N}.
There is no a universal way to compute the set P for every system. One possibility is to estimate each element pi is by

using the empirical histogram of the values of the time series using somemethod that wishfully leads to a good estimation of
the underlying probability distribution function of the data. This is done by using the histogram as the maximum likelihood
estimator of the PDF, and computing the probabilities pi as:

pi =

∑T−m+1
l=1 1(xt belongs to bin i)

T − m + 1
, (3)

leading to the Normalized Amplitude Entropy HML (note: ML stands for the Maximum Likelihood method). Note that this
entropy does not take account of the order of the data appearance in the time series.

Other way to compute the probabilities pi is through the symbolization proposed by Bandt and Pompe [2]. Let Xm(t) =

(xt , xt+1, . . . , xt+m−1) with 0 ≤ t ≤ T − m + 1 be a non-disjoint partition containing the vectors of real values of
length m of the time series {Xt}t∈T . Let Sm≥3 the symmetric group of order m! form by all possible permutation of order
m, πi = (i1, i2, . . . , im) ∈ Sm (ij ̸= ik ∀j ̸= k so every element in πi is unique). We will call an element πi in Sm a symbol or
a motif as well. Then Xm(t) can be mapped to a symbol πi in Sm for a given but otherwise arbitrary t . The m number of real
values Xm(t) = (xt , xt+1, . . . , xt+m−1) are mapped onto their rank. The rank function is defined as:

R(xt+n) =

m−1∑
k=0

1(xt+k < xt+n) (4)

where 1 is the indicator function (i.e. 1(Z) = 1 if Z is true and 0 otherwise), xt+n ∈ Xm(t) with 0 < n ≤ m − 1 and
1 ≤ R(xt+n) ≤ m. So the rank R(min(xt+k)) = 1 and R(max(xt+k)) = m. The complete alphabet is all the possible permutation
of the ranks. Hence, any vector Xm(t) is uniquely mapped onto πi = (R(xt ), R(xt+1), . . . , R(xt+m−1)) ∈ Sm. With this Rank



Fig. 1. Rank Permutation Mapping: All symbols form = 3 are shown. With this rank permutation mapping one simply maps each value xi in Xm(t) placing
its rank R(xi) ∈ {1, 2, . . . ,m} in chronological order to form πi in Sm . Using the rank permutation mapping we compute pi = P(πi). It can be seen that the
indexes of the vertical axis are fixed, ordered by amplitude (i.e. ranks), and they are mapped onto the time axis. For each vector X(3)

t = (xt , xt+1, xt+2), the
resultant pattern π̃ (3) can be obtained reading the labels in the horizontal axis from left to right (in chronological order).

Permutation Mapping one simply maps each value xi in Xm(t) placing its rank R(xi) ∈ {1, 2, . . . ,m} in chronological order to
form πi in Sm. Using the rank permutation Mapping we compute pi = P(πi) (see Fig. 1 bottom) ,

pi =

∑T−m+1
l=1 1(Xm(l) has ordinal patternπi in Sm)

T − m + 1
, (5)

where 1 is the indicator function and i = 1, . . . ,m!.
Using these probabilities, theNormalized Permutation EntropyHBP for eachm can be computed using Eq. (2)whereN = m!

is the order of the symmetric group Sm and Smax = log(N). Note that this entropy does not take account of the amplitude of
the observations besides the relative amplitude between neighbor values. The set ofP = {pi i = 1 . . .N} obtained as in Eq. (5)
is what we will call from now onwards the Bandt and Pompe Distribution (BP PDF). The BP PDF has two free parameters:
the embedding dimension m and the time delay τ but within this paper HBP is calculated using a fixed τ = 1 parameter in
order to not confuse with temporal scales and all results are shown for the embedding dimensionm = 4 because there was
no significant difference in the results when them parameter varied fromm = 3 tom = 6.

Another useful informational quantifier is the statistical complexity [8]–C–defined as,

C[P] = QJ [P, Pe] · H[P] (6)

whereH is theNormalized Permutation Entropy,QJ is the disequilibrium,P is the BP PDF andPe = {pi = 1/N, ∀i = 1, . . . ,N}.
QJ is defined in terms of the Jensen–Shannon divergence. That is,QJ [P, Pe] = Q0 J [P, Pe], withJ [P, Pe] = S[(P+Pe)/2]−
S[P]/2 − S[Pe]/2, and Q0 a normalization constant.

3. Stochastic processes

A general linear stochastic model is described that supposes a time series to be generated by a linear aggregation of
random shocks [10]. A widely used stochastic model is the autoregressive model or order p,

zt = φ1zt−1 + φ2zt−2 + · · · + φpzt−p + at (7)

where the current value zt is expressed as a finite, linear aggregate of previous values of the process {zt−1, zt−2, . . . , zt−p}

and a shock at , distributed with mean 0 and finite variance σ 2.
If zt is a wide-sense stationary process (i.e. the mean µ and the variance σ 2

z do not depend on time), the autocorrelation
between zt ans zs depends only on the lag between t and s. This implies that the autocorrelation can be expressed as a
function of the time lag (ν = t − s) between observations:

R(ν) =
E(zt − µ)E(zt−ν − µ)

σ 2
z

. (8)

For simplicity the autocorrelation of lag ν = 1 is expressed as R(1) = ρ(rt , rt+1) = ρ1.
We consider three kind of autoregressive process: Gaussian, Exponential and Uniform. The difference between them is

the form of the random shock at . Within this paper, for sake of simplicity we set the order of the autoregressive process
p = 1 leading to the first-order autoregressive process AR(1)

Gaussian autoregressive model of order 1 AR(1): In the Gaussian process, Eq. (7) takes the form:

zt = φ1zt−1 + at (9)



Table 1
Discrete uniform distribution for the random shock at in the AUR(1) model 
according to [17] where k ∈ {2, 3, . . .}.
at 0 1

k
2
k · · ·

(k−1)
k

P(at ) 1
k

1
k

1
k

1
k

1
k

where the current value zt is expressed as a finite, linear aggregate of the previous values of the process zt−1 and an
independent and identically distributed (i.i.d.) random shocks at that has marginal Gaussian distribution with mean 0 and
variance σ 2. For this process ρ1 = φ1.

Exponential autoregressive model of order 1 NEARA(1): Many positive-valued time series have an exponential marginal
distribution [13,14]. When the zt random variable has an Exponential marginal distribution with λ parameter, the linear
autoregressive model Eq. (7) takes the form:

zt = at +

{
β.zt−1 w.p α

0 w.p 1 − α
(10)

with

at =

⎧⎪⎨⎪⎩
et w.p

1 − β

1 − (1 − α)β

(1 − α).β.et w.p
αβ

1 − (1 − α)β

(11)

where ‘‘w.p.’’ stands by ‘‘with probability’’. α > 0 and β > 0 are free correlation parameters such as ρ1 = αβ , providing
that α and β are not both equal to one. at has a particular mixed exponential distribution, where et {t = 0, 1, 2 . . .} are
independent identically distributed exponential variables with parameter λ > 0 in order to make the marginal distribution
of zt exponential with λ parameter. Note that with α or β equal to zero zt are exponential i.i.d. and both α and β are
nonnegative, so with this method the autocorrelations ρk = (αβ)k are positive and geometrically decreasing. This is unlike
the Gaussian AR(1) model where ρ1 can be negative. To extend the exponential models to this possibility, two sequences zt
and z ′

t are cross-couple constructed, involving antithetic variables, developing the NEARA(1) model in [16].
Uniform autoregressive model of order 1 UAR(1): Another useful model construction for non-Gaussian variate time series

is the first order autoregressive process with uniform marginal distribution. The model responds to

zt =
1
k
zt−1 + at (12)

with k ≥ 2. It has been shown in [17] that zt would shield continuous uniform (0,1) marginal distribution if the i.i.d. random
shocks at has themarginal discrete uniform distribution presented in Table 1 where k ∈ {2, 3, . . .} and ρ1 = 1/k. This model
is called UAR(1) and has the lag r autocorrelation ρr = ρr

= (1/k)r . If ρ1 is −1/k there are similar results for negatively
autocorrelated models.

4. Numerical results

The processes presented in the previous Section were simulated, varying the autocorrelation.
For the Gaussian processes nine positively and nine negatively autocorrelated time series were simulated, with ρ1 =

± {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and in addition with ρ1 = 0, the well known Gaussian white noise. All these
processes were simulated with shocks at with σ = 1 and µ = 0. The exponential processes where simulated with
α and β such ρ1 = {−0.2, −0.1, 0, 0.125, 0.25, 0.5, 0.75}. The autoregressive uniform process was simulated for ρ1 =

± {1/2, 1/3, . . . 1/9} plus the uncorrelated data with uniform marginal distribution. All series have length N = 106 points.
Using the Information Theory Quantifiers presented in Section 2, we first analyze the localization in the HBP

× C
informational plane (Fig. 2) of these processes. Their planar localization is in accordance with others previously reported [3].
It should be pointed out that the planar localization of the Gaussian and non-Gaussian autoregressive process coincide.
Uncorrelated time series, i.e. Uniform, Gaussian and Exponential randomnumbers, are located in the same region (HBP , C) =

(1, 0), with maximum entropy and minimum complexity. As the autocorrelation increases in absolute value it moves to
a higher C and a lower HBP planar localization. The three processes are mostly indistinguishable in the HBP

× C plane,
specially for lower correlation parameters. Thus, the underlying marginal density distribution is not a factor of the location
of the process in the HBP

× C informational plane, and this is because the Bandt and Pompe methodology for calculating
pi takes account about the correlation structure of the time series but not about the probability distribution of the data
process generator. This fact can be observed in Fig. 3 where the three histograms for the BP PDF from non-correlated
Uniform, Gaussian and Exponential standard distributions are presented. As it can be seen, the three histograms are mostly
indistinguishable, confirming the first insight that the PE is not capable to discriminate between different probability
distributions.



Fig. 2. Localization in the causal entropy-complexity plane, considering m = 4, τ = 1, of the stochastic processes simulated in the present work, in
squares: exponential with parameter λ = 1, circles: standard Gaussian distribution and triangles: discrete uniform with support [0, 1]. Darker color
represents higher values in the autocorrelation. Average values over ten realizations with different seeds are presented. The continuous lines represent
the curves of maximum and minimum statistical complexity, Cmax and Cmin , for a given normalized permutation entropy HBP [8]. As it was expected, the
different location in the plane of the process depends, in first place of the kind of process (i.e. deterministic, stochastic), that in this paper all three are
autoregressive stochastic processes, and in second place, depends on the strength of the autocorrelation. It can be noticed that the underlying marginal
density distribution is not a factor of the location of the process in this plane. For that reason the HBP

× HML plane is presented in Fig. 4.

To get a better characterization of time series in a simple manner, we present a novel information plane: the HBP
× HML

plane (Fig. 4). In this plane the simulated stochastic processes are clearly differentiated both in the x-axis, HBP and in the
y-axisHML. The higher correlation coefficient is, the lowerHBP value andHML remains constant. In contrast, as the symmetry
increases and the kurtosis decreases, the value of HML also increases and the value for HBP remains constant. Hence, the
planar localization of a given time series in this plane can discriminate not only the autocorrelation structure (HBP ) but also
the probability distribution of the time series (HML).

5. Real applications

Two real applications are presented for the novel HBP
× HML plane. One referred to climate and the other to the stock

market.

5.1. Climate change time series

Paleoclimatic data, taken from fossil corals, ice sheet, etc., make possible the study of the history of climate changewithin
the Earth evolution. Studies using paleoclimatic data show that the El Niño/Southern Oscillation (ENSO) has been present
in the Earth climate for at least the past 130000 years [18]. We study the dynamics of the Holocene proxy ENSO record
corresponding to Pallcacocha Lake sedimentary data, presented in [19]. The Holocene period is the geological epoch that
began after the Pleistocene approximately 11700 years before present [19–22] . The proxy record was obtained from the
analysis of clastic laminae deposition in sediment two 8m cores retrieved from the Pallcacocha Lake in Ecuador, interpolated



Fig. 3. Time Series and their histogram for the symbolic sequence generated using Bandt and Pompe methodology for the three uncorrelated stochastic
processes, in red: exponential with parameter λ = 1, green: standard Gaussian distribution and light blue: discrete uniform with support [0, 1]. This
Figure depicts the fact that Shannon entropy endowed with probabilities using the Bandt and Pompe methodology fails to distinguish between probability
distributions.

Fig. 4. Causal HBP
× HML considering m = 4, τ = 1, for the stochastic processes simulated in the present work, in squares: exponential with parameter

λ = 1, circles: standard Gaussian distribution and triangles: discrete uniform with support [0, 1]. The dashed lines indicates the theoretical entropy of
the given distribution (exponential red, Gaussian green and uniform blue). Darker color represents higher values in the autocorrelation. The stochastic
processes are clearly differentiated both in the x-axis , HBP and in the y-axis HML . The normalized amplitude Shannon entropy depends mainly on the
shape of the distribution, but in a lesser way on the form that the histogram was constructed. The histogram construction of the uniform distribution only
depends on the length of the support interval of the random variable, in this case, for all the UAR(1) processes is the same: I(0, 1). A similar case occurs
with the exponential variable but in this case depends on the rate. The NEARA(1) processes were all simulated with λ = 1. On the other hand the histogram
of a Gaussian AR(1) process depends on the variance σ 2

z that depends on the autoregressive coefficient (φ) and on the shock variance σ 2 . The processes
simulated in this paper have all the same variance σ 2

= 1, but differs in φ. This is how the variation in the y-axis for these processes can be interpreted.
Nevertheless this disturbance does not interferes with the discrimination of the processes with different marginal distributions.



Fig. 5. HBP
× HML for the ENSO evolution during the Holocene period. When darker, closer in time. The labels stand for the years (in thousands) before

present. The dashed lines indicates the theoretical entropy of the given distribution, in red: exponential with parameter λ = 1 and green: standard Gaussian
distribution. It can be noticed from the Figure that most of the variation during the Holocene is due to change in the autocorrelation structure and not in
the probability distribution. Probability distribution remains almost constant and has a lower entropy than an exponential distribution almost all the time,
but between 2500 and 1000 years before present the HML decreases below the theoretical exponential line given an indication of extreme events on this
period.

to a sample time of one year using a cubic Hermite polynomial. This data set was previously analyzed in [23–25] among
others. In Fig. 5 the HBP

× HML plane is presented for the Pallcacocha Lake sedimentary data and its evolution over time. It
shows that the correlation dynamics (measured by HBP ) varies over the years during the Holocene leading to chaotic and
hyper-chaotic behavior, see [25] and the probability distribution of the data generation process also changes. It can be noticed
from the Figure that most of the variation during the Holocene is due to change in the autocorrelation structure reflected
in the Normalized Permutation Entropy that ranges between 0.332–0.916 but there is also a change in the probability
distribution, suggested by the interval between 0.639–0.836 for the Normalized Amplitude Entropy. Probability distribution
remains between the Gaussian and the Exponential distribution almost the time, but between 2500 and 1000 years before
present the HML decreases below the theoretical exponential line given an indication of extreme events on the period. In
Fig. 6 the main statistical indicators that affect both entropies are presented. Normalized Amplitude Entropy HML depends
on the shape of the PDF of the data, represented by the skewness and kurtosis and in a lesser extent, the standard deviation
(the coefficient of variation – CV – in this case) and Normalized Permutation Entropy HBP depends on the structure of the
autocorrelation, represented in this case by ρ(rt , rt+1). Near 9000 thousands years ago the data was almost Gaussian (i.e. low
CV, kurtosis near 3 and skewness 0) but with strong autocorrelation, near 1, and this is reflected in the HBP

× HML plane of
Fig. 5 in a high HML and a low HBP . According to this analysis, the probability of extreme events increased during a time in
the Holocene period but returned in the present near the starting point. This is a new information about ENSO evolution, up
to our knowledge, that could bring a new insight in the research in climate change, studying the increase of extreme events
by the probability distribution that generates the data.

5.2. Financial time series

We employed daily data beginning in January 2 1995 and ending in July 23 2007. There is on average 3100 observations
for each index. All country indexes were studied for the same time period.

Let zt be the equity index of a stock on a time t, the continuously compounded return or log return rt of an asset is defined
as the natural logarithm of its simple gross return:

rt = log
(
zt+1

zt

)
. (13)

We study the log return time series of the stock market of 30 countries, 13 emerging, 15 developed and 2 frontiers
countries, according the Morgan Stanley Capital Index methodology (MSCI). These data were downloaded from https:
//finance.yahoo.com/.

https://finance.yahoo.com/
https://finance.yahoo.com/
https://finance.yahoo.com/


Fig. 6. Main statistical indicators that affect both entropies are presented for the dynamics of the Holocene proxy ENSO record corresponding to Pallcacocha
Lake sedimentary data. Normalized amplitude entropy HML depends on the shape of the PDF of the data, represented by the skewness and kurtosis and in
a lesser extent, the standard deviation (the coefficient of variation – CV – in this case) and normalized permutation entropy HBP depends on the structure
of the autocorrelation, represented in this case by ρ(rt , rt+1). Near 9000 thousands years ago the data was almost Gaussian (i.e. low CV, kurtosis near 3 and
skewness 0) but with strong autocorrelation, near 1, and this is reflected in the HBP

× HML plane of Fig. 5 in a high HML and a low HBP .

The Efficient Market Hypothesis (EMH) states that the returns of an efficient financial market is characterized as white
noise. However it is known that stock markets indexes have multifractal structure [26]. In [27] was found that emerging
markets have greater correlation than developed markets and in [28] it is shown that deviations from the EMH could be
associated with the degree of development. As [29,30] pointed out, deviation from the EMH, and therefore the multi-fractal
structure, could be explained in two ways: by the departure from Gaussianity and by the presence of autocorrelations. In
Fig. 7 theHBP

×HML plane is presented for financialmarkets for all 30 countries studied in this contribution. This Figure agrees
with the results in [28–30] but also reflects the departure from Gaussianity. Even all time series are below the exponential
distribution.While Argentina (MERVAL index) is locatednear the emergent countries, Venezuela (IBVC index) is far fromboth
groups, emergent and developed; this fact shows that even the EfficientMarket Hypothesis is contrasted using this plane but
the Morgan Stanley Capital Index (MSCI) includes other sources of information, as political features, for the classification.
Markets that have lower HML in general reflect more probability for extreme events. With this plane a description of the
inefficiency, measured as the departure from the white noise in the probability distribution and in the correlation structure,
of the financial markets is provided, and it could be used as an important tool for the decision maker in this field as it can
grasp no only the risk by the dynamical behavior of the market but also the probability of extreme events by the shape of
the distribution.

In Tables 2 and 3 the main statistical indicators that affect both entropies are presented. Normalized Amplitude Entropy
HML depends on the shape of the PDF of the data, represented by the skewness and kurtosis and in a lesser extent, the
standard deviation (this is because the entropy is normalized) and Normalized Permutation Entropy HBP depends on the
structure of the autocorrelation, represented in this case by ρ(rt , rt+1). The excess of kurtosis from 3 is an indicator of the
departure from Gaussianity, present in all the markets. A positive skewness suggest that the is an inclination in the index
to close in a downward trend. The different values of these indicators impact in the value of HML. On the other hand while
the autocorrelation coefficient varies between indexes, the HBP remains constant along all the countries, implying that the
correlation structure is far more complex than an AR(1) process.

6. Conclusion

In summary, in this paper, we introduce a new informational plane,HBP
×HML, which is very simple and fast to compute.

This plane complements the HBP
× C giving global information about the family distribution of the data generator process.

This informational plane allows to discriminate between probability distribution as well as the autocorrelation structure
presented in the time series leading a complete description of the data generation process. In all the informational planes



Fig. 7. HBP
× HML for 30 countries. In red squares are the 15 developed countries, in green circles, 13 emerging countries, and in light blue triangles the

2 frontier countries. The dashed lines indicates the theoretical entropy of the given distribution, in red: exponential with parameter λ = 1 and green:
standard Gaussian distribution. Even all time series are below the exponential distribution entropy (red dashed line) , developed countries have lowerHML

than emerging ones in general. Two frontier countries were added in the plot: Argentina and Venezuela. While Argentina is located near the emergent
countries, Venezuela is far from both groups, emergent and developed; this fact shows that even the efficient market hypothesis is contrasted using this
plane and theMorgan Stanley Capital Index (MSCI) includes other sources of information, as political features, for the classification. That can be understood
as noise for the purpose of this plot. This new plane shows insights from financial series that are very useful for decision making.

Table 2
Main statistical indicators for the financial time series for emergent and frontier countries. Normalized amplitude entropy HML depends on the shape of
the PDF of the data, represented by the skewness and kurtosis and in a lesser extent, the standard deviation, and normalized permutation entropy HBP

depends on the structure of the autocorrelation, represented in this case by ρ(rt , rt+1).

Country Code Index Std. Deviation Skewness Kurtosis HML ρ(rt , rt+1) HBP

Emergent

Brazil IBOV Brazil Bovespa Stock 0.01878 −0.09017 6.74441 0.725240878 0.01545 0.998069939
China SHCOMP Shangai Stock Exchange Composite 0.01571 −0.09326 7.56212 0.691524927 0.00504 0.995362536
Greece ASE ASE General 0.01765 −0.00937 7.19686 0.704972496 0.07700 0.997797882
India SENSEX Bombay Stock Exchange Sensitive 0.01633 −0.18087 9.35773 0.713399367 0.07133 0.996100933
Indonesia JCI Jakarta Composite 0.01486 −0.67816 8.87694 0.678410191 0.11022 0.997225449
Ireland ISEQ Irish Overall 0.01451 −0.56634 10.53043 0.664173043 0.04400 0.998153752
Korea KOSPI Korea Composite 0.01711 −0.52719 8.20985 0.701709654 0.01953 0.996907849
Malaysia KLCI Kuala Lumpur Composite 0.01119 −0.24248 9.411541 0.700792033 −0.09151 0.997169286
Mexico MEXBOL Mexico Bolsa 0.01415 0.02337 7.49024 0.692089705 0.09156 0.997898983
Philippines PCOMP Philippines Composite 0.01390 0.32669 17.55425 0.667679565 0.12300 0.998395004
Taiwan TWSE Taiwan Taiex 0.01515 −0.23434 5.68430 0.730935015 0.04490 0.996032884
Thailand SET Stock Exchange of Thailand 0.01461 −0.70709 11.66831 0.688520396 0.03502 0.998100887
Turkey XU100 Istanbul Stock Exchange National 100 0.02340 0.01436 9.95065 0.724199712 0.00479 0.998452833

Frontier

Argentina MERVAL Argentina Merval 0.02121 −0.11700 7.89989 0.722627547 0.05484 0.998193693
Venezuela IBVC Venezuela Stock MKT 0.01477 −0.27208 26.97341 0.61503886 0.12370 0.997946076

presented in the literature [5,7] while the dynamics of the processes are reflected in their location in an informational plane,
this not necessarily means that given a location of a time series in an informational plane one can determine for sure what
kind of process is the generator of that data, and the sameproblematic persists in thisHBP

×HML plane. One aspect to consider
is that any entropy measure is a measure of global character, and is not too sensitive to strong changes on the distribution
taking place on small sized region. Once the empirical PDF is calculated for a given time series, the order of the elements to
which the probability is calculated (for example in this contribution for the Shannon Amplitude Entropy are the bins, and for
the Shannon Permutation Entropy are the symbols πi) does not matter so, given a distribution with similar probabilities for



Table 3
Main statistical indicators for the financial time series for developed countries. Normalized amplitude entropy HML depends on the shape of the PDF of
the data, represented by the skewness and kurtosis and in a lesser extent, the standard deviation, and normalized permutation entropy HBP depends on
the structure of the autocorrelation, represented in this case by ρ(rt , rt+1).

Country Code Index Std. Deviation Skewness Kurtosis HML ρ(rt , rt+1) HBP

Developed

Austria ATX Australian Traded 0.01509 −0.30355 10.02285 0.664091001 0.06345 0.998279483
Belgium BEL20 BEL20 0.01330 0.04558 8.78691 0.655916946 0.06578 0.998183036
Canada SPTSX S&P/TSX Composite 0.01204 −0.63524 11.61914 0.74109337 −0.01982 0.998409756
Denmark KFX OMX Copenhagen 20 0.01326 −0.25255 8.53230 0.669285595 0.03166 0.999236637
France CAC CAC 40 0.01546 0.02853 7.59435 0.679019783 −0.03262 0.997102279
Germany DAX DAX 0.01590 0.02741 7.07142 0.712247375 −0.01668 0.998039359
Hong Kong HSI Hang Seng 0.01590 −0.06732 10.72049 0.682334856 −0.01464 0.997462628
Italy MIB30 Milan MIB30 0.01465 −0.04972 9.21087 0.667288604 −0.02176 0.997329488
Japan TPX Tokio Stock Price 0.01437 −0.35025 8.93408 0.683068356 0.01708 0.99675351
Singapore STI Straits Times 0.01235 −0.42140 9.03488 0.655154607 0.00960 0.998320456
Spain IBEX IBEX 35 0.01557 0.11338 7.79378 0.693421573 0.00264 0.998957353
Sweden OMX OMX Stockholm 30 0.01605 0.06962 6.15044 0.70933964 −0.02431 0.998385254
Switzerland SMI Swiss Market 0.01232 0.01696 9.08348 0.664941954 0.02465 0.99867319
United Kingdom UKX FTSE 100 0.01272 −0.12137 8.84082 0.657877244 −0.05049 0.999176443
USA SPX S&P 500 0.01324 −0.17111 10.59726 0.654697844 −0.08382 0.996275065

the bins, the Shannon Amplitude Entropy will not differentiate between unimodal or bimodal distributions. For detection
of differences in local aspects of the PDF, other measures can be considered as the Fisher Information Measure [31]. The
potential application of this plane is presented with two examples from actives research areas: climate change model
and efficiency in financial markets. In the former, evidence about extreme evens change during the Holocene is obtained
and in the last, a new dimension of financial risk is grasp, the presence of very asymmetric distribution in the emergent
countries. We conclude by encouraging researchers to use this informational plane along the well establishedHBP

× C plane
to characterize autoregressive process and stochastic processes in general.
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