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Abstract

This paper addresses the development and computational implementation of an inference engine based on a full fuzzy
logic, excluding only imprecise quantifiers, for handling uncertainty and imprecision in rule-based expert systems. The
logical model exploits some connectives of Lukasiewicz’s infinite multi-valued logic and is mainly founded on the work of
L.A. Zadeh and J.F. Baldwin. As it is oriented to expert systems, the inference engine was developed to be as knowledge
domain independent as possible, while having satisfactory computational efficiency. This is achieved firstly by using the
same linguistic term set in every universe of discourse. Thus, it is possible to add a dictionary to the knowledge base, which
translates the usual linguistic values of the domain to those of the term set. Secondly, the logical operations of negation and
conjunction and the modus ponens rule of inference are implemented exclusively in the truth space.

The approach provides, firstly, a realistic and unambiguous solution to the combination of evidence problem and, secondly,

offers two alternative versions of implementation. The full version uses the algorithms of the operations involved. In a more
efficient version, which places a small constraint on the use of linguistic modifiers and is confined to knowledge bases whose
inference chains are no longer than three links, the above algorithms are replaced by pre-computed tables. A
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1. Introduction the knowledge being imprecise and uncertain, as a
rule, it is either impossible or very expensive to obtain
more reliable information. Therefore, the only alter-
native is to use the information as it is. However, in
highly specialised problems, the human expert looks
for a solution under these conditions, and, therefore,

an expert system (ES) should be equally capable of

Data that are present in real-world problems can be
precise and imprecise, certain and uncertain. More-
over, most knowledge is heuristic and, hence, is
usually imprecise and uncertain. Apart from
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doing so if it is to emulate the expert.
It is clear from the above just how important it
is to have inference engines based on extensions of
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bi-valued logic that permit not only truth grades, as
in multi-valued logics, but also the representation,
measurement and processing of uncertain and impre-
cise information. If there is no capability for handling
uncertain information, a precise truth value must be
selected, just as precise values must be adopted for
imprecise information when the capability to measure
and process this kind of information is not available.
This latter case poses a bigger problem, because if the
computational implementation of the system does not
have the capability to handle partial pattern matching,
it is possible that not all the implicit information will
be made explicit for processing. It is conceivable in
both cases that the best decision, that is, the best hy-
pothesis from a set of hypotheses in the particular case
of ESs, will not be made, leading to lower reliability.
Furthermore, while handling uncertainty, which is ex-
clusively connected to the truth value of propositions,
involves only one linguistic term set of a single uni-
verse -the truth space-, the treatment of imprecision,
which depends on the proposition itself, involves an
almost infinite number of different universes with dif-
ferent term sets, corresponding to the universes of dis-
course of the facts involved. This would lead to a huge
amount of linguistic values for assignation and, con-
sequently, to a very complicated and inefficient com-
putational implementation.

It is patent that fuzzy logic has gained scientific
maturity at the theoretical level. From the tech-
nological point of view, however, this success is,
except for a very few, shining contributions, less clear-
cut. Apart from considering the scientific issues, this
paper addresses the validation of ideas that close a
major knowledge gap, namely, the development of an
effective and computationally efficient inference en-
gine based on fuzzy logic for uncertain and imprecise
expert reasoning.

The solution proposed in this paper presents the first
development and implementation of an inference en-
gine oriented to rule-based ESs, based on a full fuzzy
logic model [5,26], excluding only imprecise quanti-
fiers [29], for handling both uncertainty and impre-
cision, where a full fuzzy logic means a logic that
includes:

(1) Truth values as fuzzy subsets of the truth space
rather than precise numbers, weights or de-
grees of certainty. As mentioned under point

5.1.1.1, the term set must contain five values:
“absolutely_false” (“false” in bi-valued logic),
“false”, “undecided”, “true” and “absolutely_true”
(“true” in bi-valued logic). The others must be
intercalated between the above. Therefore, fuzzy
numbers cannot be used either.

(2) Fuzzy pattern matching, managed by means of
Zadeh’s compositional modus ponens [26].

(3) Imprecise quantifiers.

(4) Some acceptable solution to the problem of com-
bination of evidence.

It follows from the above that uncertainty is con-
fined to possibilistic uncertainty as far as a model
based on fuzzy logic is concerned.

The inference engine offers a realistic and unam-
biguous solution to the combination of evidence prob-
lem, an efficient implementation, which makes the
computational implementation of a system of this sort
feasible, and, finally, is largely independent of knowl-
edge domains, without sacrificing the possibility of a
user-friendly interface, which enables the system to
be queried using the usual linguistic values of the do-
main.

The fuzzy logic model is mainly based on papers
by Zadeh [5,22-26,28] and Baldwin [1-4], address-
ing the treatment of uncertainty and imprecision,
oriented to rule-based ES applications. It is feasible to
adopt Lukasiewicz’s implication in order to achieve
a close generalisation of bi-valued logic [13,15] for
the stated problem. The reason is that the logic oper-
ations are carried out exclusively in the truth space,
which does not exacerbate inefficiency as happens
when this implication is used for processing in the
universes of discourse. For the combination of evi-
dence problem, a solution is proposed that is based
on a fuzzy logic extension of an approach by Dubois
and Prade [11] for the possibilistic model, which
always leads to three precisely defined cases: consis-
tency, partial inconsistency and total inconsistency.
It was not foreseen that the inference engine should
handle exceptions in the rules.

In order to achieve computational efficiency, the
generalised engine operations corresponding to nega-
tion, conjunction and modus ponens are carried out
exclusively in the truth space, along with the opera-
tions of truth functional modification (TFM) [5] and
inverse truth functional modification (ITFM) [1]. The



possible irreversibility of these two operations inter-
facing between the truth space and the universes of
discourse [9], if any, always leads to the most con-
servative (the least restricted) conclusion. The com-
bination, on the one hand, of an adequate term set of
nine linguistic truth values with parabolic membership
functions, generated by adding the value undecided to
the other eight values obtained by applying the linguis-
tic modifiers [6,21] “fairly”, “very” and “absolutely”
to the values “true” and “false”, and, on the other,
the use of only one term set of linguistic values with
properly overlapped trapezoidal functions in all uni-
verses of discourse and the same linguistic modifiers
as for truth values, simplifies the operations interfac-
ing between the truth space and the universes of dis-
course and assures that ITFM operation results are in
accordance with what should be expected. As modus
ponens and ITFM can output non-parabolic functions
in some cases, such engine operations are followed
by a parabolic approximation operation to ensure that
every truth-value always has a parabolic function.

All universes of discourse have the same term set
of five linguistic values (“tiny”, “small”, “medium”,
“large” and “huge”) of properly overlapped trape-
zoidal membership functions to assure independence
of knowledge domains. The use of the same three lin-
guistic modifiers as in the truth space increases the
spectrum of standard values to twenty.

A dictionary has been foreseen in every knowledge
base to produce a user-friendly interface. It is, there-
fore, possible to interact with the system using the
usual linguistic values of the universe of discourse to
which the fact in question belongs. The dictionary then
translates these to the linguistic values of the term set.

Finally, the conjunction of the solutions in the truth
space and in the universes of discourse provides for
two versions of implementation. The full version uses
the algorithms of the operations involved. In a more
efficient version, the above algorithms are replaced by
pre-computed tables, constructed by applying linguis-
tic approximation to each value obtained after apply-
ing the algorithms of the non-closed operations. This
version, which places a small constraint on the use
of linguistic modifiers and is confined to knowledge
bases whose inference chains are no longer than three
links, has been incorporated into an automatic theo-
rem prover, fully implemented in Prolog. On the other
hand, the main program of the full version has been
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implemented in Prolog and the calculation algorithms
in C.

2. State of the art

At present, most fuzzy logic applications, generally
referred to as fuzzy systems, are essentially oriented
to control (fuzzy control), and only a few address
ESs. This is mainly due to the fact that only in con-
trol systems has it been possible to produce efficient
implementations. The reason for this is that control
systems always operate with certain information and
precise data, where it is clearly possible to use term
sets of similar linguistic values and of standard func-
tions in all universes of discourse and, furthermore,
Mamdani’s implication (min-conjunction) [13,18] can
be adopted. On the other hand, ESs must operate with
certain and uncertain information, precise and impre-
cise data. This means that there are usually many uni-
verses of discourse with different term sets. Finally,
some implication function other than Mamdani’s (for
instance, Lukasiewicz’s or Kleene-Dienes’s implica-
tion) should be adopted in order to assure a logic
model that comes as close as possible to a generali-
sation of bi-valued logic [15] for the stated problem.
All of this makes the operation of the modus ponens
rule of inference considerably more complex and in-
efficient in inference engines operating in universes of
discourse, especially as the antecedents of the rules
are more complex [16]. Truth space operation does
not have this problem and normally provides much
higher efficiency [1]. However, this alternative is more
or less ruled out by the presence of ITFM operations,
since if membership functions in the truth space and
in the universes of discourse are not properly selected,
the results output by those operations are very likely
not to be totally in accordance with what should be
expected.

All the above problems of ES-oriented fuzzy sys-
tems have meant that implementations capable of han-
dling uncertainty and imprecision are not yet based
on a full fuzzy logic, as defined in Section 1, which
could be considered to be a close generalisation of bi-
valued logic, as essential in this type of applications.
Some examples of systems of this kind are: PROTIS
[20], DIABETO [7], Z-1I [17] and, more recently,
RESYFU [14].
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The PROTIS System uses fuzzy rules whose “if”
part represents imprecise concepts by means of a
fuzzy subset, chosen by the expert from four stan-
dard subsets, and whose “Then” and “Else” parts
make use of precise numbers provided by the ex-
pert, such as independent weights of evocation
and rejection. Fuzzy pattern matching is possible,
and is based on the use of possibility and neces-
sity measures. The DIABETO System is based on
the model developed by Dubois and Prade [10],
which combines possibilistic logic for handling un-
certainty with Zadeh’s compositional modus po-
nens for handling imprecision. The Z-II System
uses degrees of certainty with two alternatives:
precise numbers or fuzzy numbers, allowing rep-
resentation of imprecise facts in data and in rule
antecedents and consequents, and making inferences
by means of a modified compositional rule of in-
ference. The RESYFU System (Reasoning System
with Fuzzy Uncertainty) works with knowledge
represented in the form of “If-~Then” rules accompa-
nied by uncertainty degrees expressed by fuzzy num-
bers. Tt should be noted that some other systems, like
MILORD [12], are out of the scope of this compar-
ison because they handle merely uncertainty and not
impreciseness.

It is clear then that none of the above systems in-
cludes a full fuzzy logic as defined in Section 1.

Finally, as an example of very recent trends, which
attest to the search for other alternatives to the nu-
merical approach of approximate reasoning, due to its
implementation problems, the SAR System (symbolic
approximate reasoning) [8] should be mentioned. This
system enlarges on previous work by Schwartz con-
cerning the symbolic treatment of approximate rea-
soning [19]. In the referenced paper, the authors of
SAR discuss the huge effort that has gone into prop-
erly implementing aspects of approximate reasoning
theory for use in expert reasoning systems and con-
clude by saying: “Yet none have so far come near to
implementing it in its entirety”.

3. Problem statement
This paper seeks to develop and implement an infer-

ence engine that solves the following general problem
of uncertain and imprecise expert reasoning based on

fuzzy logic, limited only by the exclusion of imprecise
quantifiers:
To find the value of 43(X3) from:

(1) (A1(X))is P A=4x(Xa) is B! = A3(X3) is B ) is
11,

(2) (44(Xy) is B! = A3(X3) is B?) is 1,

(3) (Ai(Xy) is B?) is 17,

(4) (4(Xp) is P?) is 13,

(5) (Aa(Xa)is B?) is 13,

/T, T, 73,713, 74 C V = [0, 1] =truth space: fuzzy sets
Ay, Ay, A3, Ay attributes X1,X, X3, Xy objects
PP CU; BB C Uy B BB CUs B R CUs:
fuzzy sets satisfying all the following conditions, de-
signed to attain an implementable general-purpose
inference engine:

e a close generalisation of bi-valued logic for the
stated problem,

e good computational efficiency,

e possibility of a realistic and unambiguous combi-
nation of evidence,

e large independence of knowledge domains,

e provision for a user-friendly interface.

Imprecise quantifiers have not been included for the
system in question on two grounds. First, they can be
accounted for in most cases, albeit less expressively,
by adopting suitable linguistic truth-values. Second,
their inclusion would have seriously complicated and
detracted from the fulfilment of the above conditions,
especially as far as computational efficiency and com-
bination of evidence are concerned. With a view to
preserving expressiveness, however, we have not yet
abandoned the idea of imprecise quantifiers and a new
version of the inference engine with such quantifiers
is planned, once a detailed analysis of the logic model
and its respective computational processing has been
completed.

The solution to this problem, divided into three
stages (logic model definition, inference engine de-
velopment and implementation) is shown in Sections
4-6, respectively.

4. Definition of the logic model

Of the five conditions imposed on inference engine
development and implementation in Section 3, the



logic model must define what should be done in order
to satisfy the first three conditions. With respect to a
close generalisation of bi-valued logic, the model is
a generalisation of Lukasiewicz’s multi-valued logic.
Concerning computational efficiency, the operations
of negation and conjunction and the modus ponens
rule of inference are applied in the truth space. With
regard to the combination of evidence, a new fuzzy
logic approach is presented, based on the concept of
degree of consistency, which makes it possible to ar-
rive at three unambiguous cases of combination, which
are compatible with reality.

Defining a logic model for the purpose described in
this paper involves defining the six operations to be
performed by the engine, that is, negation, conjunc-
tion, modus ponens, as it operates in the truth space,
TFM and ITFM, and combination of evidence. The
expressions of the first five operations are shown be-
low under points 4.1 and 4.2, based on the papers by
Zadeh [5,26] and Baldwin [1,3], already mentioned in
Section 1. Finally, the expressions for the combination
of evidence are shown under point 4.3.

4.1. Negation, conjunction and modus ponens

e Negation

—(pis 1)

pis v = Nv(7)
ey (0N) = pe(1 = 0N). (4.1)
e Conjunction

(prist ) A(p2is 1)

(p1 A p2)is T2 = Cv(t1,12)
/:u’tlz(vl2)
= Max {Min {,utl(vlz), Max ,utz(vz)} s
(n€lviz,1])

Min {,utz(vlz), MaXl])ﬂn(Ul)” . (4.2)

(v1 €12,
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e Modus ponens

(p1= p2)ist
p1is T

¥ 2 is Ty = ‘C](V])OITI(V] X Vz) ZPPV(‘C],‘EI)

/:u‘tz(UZ) = I\{Iv?;([Min[,uﬂ (Ul ):

fe(Min[1, 1 — o1 4+ v2])]], (4.3)

where for all the above expressions p; is the proposi-
tion, ., the membership function, V' the truth space,
Nv the generalised negation operation in the truth
space, Cv the generalised conjunction operation in the
truth space and PPv the generalised modus ponens rule
of inference in the truth space.

4.2. Interface operations

o TFM

(AX)isP)ist

A(X) is R = TFM(P, 1)

iR (1) = pe(pp(u)). (4.4)
o ITFM

A(X)) is P}

A1(Xy) is P}

V(X)) is Bl /A (X)) is )
= ¢ = ITFM(P', P?)
(V) = 1\(/{{?)74 tp2(ur)/ pipr (1) = v, (4.5)

where TFM(P, 7): TFM operation applied to P and 1,
V(A1(Xy) is P'/A1(X;) is P?): truth-value of 4;(X;)
is B!, since 4;(X,) is P? is true, ITFM(P!, P?): ITFM
operation applied to P! and P?.

4.3. Combination of evidence

For the system proposed in this paper, this operation
arises when during a query, for instance, there is a set
of premises as follows:

(1) 41(Xy) is P! = 4,(X2) is P,
(2) 43(X3) is P} = Ax(Xy) is P7,
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(3) 4i1(xy)is P,
(4) 43(X;) is P},

whence:

(i) 4(X>)is P,
(ii) Ax(Xy) is P2

Assuming, firstly, that there is no interaction between
Propositions (1) and (2) [25]:

Ay(X2)is P = PiNP3
Jtps (uz) = Min[ppi (u2), upz(2)]- (4.6)

If there is any dependency between the relations,
the knowledge of the relation between A4>(X>) and
other variables, like 4;(X;) and A43(X3), should be
expressed by rules of the type 4;(X;) is B! A 43(X3)
is P} = A»(X) is P! and not by rules that involve
A1(X1) and A3(X3) separately.

As the result of expression (4.6) is always a value
that is at most equal to or, generally, more restricted
than the values to be combined, its application does
not always lead to consistent results.

The combination of evidence problem in fuzzy
logic is still an open problem. This paper pro-
poses a solution to this problem, implemented in
an inference engine. This solution is based on a
fuzzy logic extension of an approach by Dubois
and Prade for the possibilistic model, based on
expression (4.6). This expression represents the
conjunctive combination mode, which is the start-
ing point for deciding which kind of combina-
tion is to be made, according to the presumed
reliability of the available knowledge, expressed
by the results derived from the calculation of the
intersection of the subsets involved, where a dis-
tinction should be made between the following
three cases:

(a) the intersection is a normalised subset,

(b) the intersection is a subnormalised but not empty
subset,

(c) the intersection is empty.

With respect to the above three cases, it can be
inferred that:

(o) Result (a) normally indicates an important over-
lapping of the membership functions of the
intersected sets, and hence the presence of reli-

able sources of information and of a consistent
data and knowledge base. Therefore, the appli-
cation of expression (4.6) leads to a satisfac-
tory result, since it arrives at a more restricted
value.

() Result (b) shows that, even though the inter-
section is not empty, there is no one value that
is fully possible for both sources, indicating,
therefore, a conflict between the sources and a
partial inconsistency of the base and data. The
application of expression (4.6) in this case al-
ways leads to a more restricted value, a result
that is incompatible with the low reliability of
the information. It is reasonable under these
circumstances to follow Dubois and Prade’s ad-
vice of adopting the disjunctive combination
mode:

Ay(X2)is P = PYUP3
/,“Pg(UZ) = MaX[HPZI(MZ)aﬂpg(UZ)] (4.7)

since this expression leads to a less restricted
value, which is more compatible with the condi-
tions in question and with reality. Semantically,
this result simply expresses indecision between
the values represented by P} and by P?, respec-
tively.

(7) Result (c) indicates a very severe conflict between
the sources and a totally inconsistent base and
data. Therefore, nothing can be asserted about the
value of the linguistic variable involved.

To summarise this point:

Ay(X>) is Py,
Az(Xz) is P%,

A2(X2) is CEd(P,, P)),

where CEd, combination of evidence operation in the
universe of discourse, involves, firstly, carrying out
the operation indicated by expression (4.6) and then,
if necessary, applying the operations under (f) or,
possibly, (7). Any tools that incorporate this approach
should give the user the alternative to change or con-
firm the data causing the conflict, when either of the
latter two cases are detected, before delivering the re-
sult of the combination.



4.4. Solution to the problem

By transforming the problem in Section 3 for solu-
tion in the truth space, it is firstly possible to write:

(1) (A41(X1)is PBIA—A4x(Xy) is P! = A3(X3) is P} ) is
T11,

(2) (As(Xy) is P} = A3(X3) is P?) is 1,

(3) (A4i(Xy) is B") is ITEM(B', TEM(P?, 1)),

(4) (4(Xs) is P) is ITEM(P), TEM(P;, 13)),

(5) (Aa(Xa) is P!) is ITEM(P}, TEM(PZ,13)),

which should be rewritten as shown below:

(1) (P A=pr=43(X;) is B is
(2) (pa=A43(X3) is P?) is 1,

(3) p1is ITFM(R', TEM(P2, 1)),
(4) py is ITFM(P, TEM(P?,13)),
(5) pais ITFM(P}, TEM(P?,13)).

It follows from the above points 4.1—4.3 that the so-
lution at the logic model level is derived by compos-
ing operations, through steps (6)—(10), as follows:

(6) (43(X3) is P) is PPv(Cv(ITFM(P', TFM(P?,
1)), NVUTEM(P, TEM(P7, 13))), 1),

(7) (43(X3) is P?) is PPV(ITFM(P, TEM(PY, 73)),
),

(8) 43(X3) is TEM(P), PPv(Cv(ITFM(P!, TFM(P?,
le))a NV(ITFM(PI 5 TFM(Pza T%)))a T ))a

(9) A43(X3)is TEM(PZ, PPv(ITFM(P!, TFM(P2, 13)),
2)),

(10) A3(X3) is CEA(TFM(P}, PPv(Cv(ITFM(B!, TFM

(Plza‘[l ))9NV(ITFM(F)21 >TFM(P22a122 )))sfll ))TFM>
([)32: PPV(ITFM(PZI 5 TFM(I)22a 722 )): TIZ)))'

5. Development of the inference engine

While the logic model is directly responsible for the
first three conditions of the problem, the development
of the engine must satisfy the last two conditions im-
posed in Section 3. With respect to the independence
of knowledge domains, the proposal is to use the same
term set in all universes of discourse. With regard to a
user-friendly interface, provision is made for a dictio-
nary in each knowledge base for translating the usual
values of the knowledge domain to those of the term
set. Furthermore, the conjunction of the solutions in
the truth space and in the universes of discourse means
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that computational efficiency can be further improved,
a realistic and unambiguous solution for the combina-
tion of evidence problem can be found, the results of
ITFM operations are in accordance with what should
be expected and, as an extra facility, two alternative
implementations are offered: the full version, which
calculates the algorithms of the operations, and a lim-
ited version, which uses pre-computed tables.

Having defined the logic model, the development
of a fuzzy logic-based inference engine is fundamen-
tally concerned with solving two problems: the prob-
lem of defining the linguistic term sets in the truth
space and in the universes of discourse, discussed un-
der point 5.1, and the problem of linguistic approxi-
mation, discussed under 5.2. Finally, the solution to
the problem, according to the definitions given under
the above points, is shown under 5.3.

5.1. Linguistic term sets

Defining the linguistic term sets involves, firstly,
defining the quality and quantity of the linguistic terms
on the basis of the analysis and discussion of the quali-
tative and quantitative conditions that should and must
be satisfied and, secondly, defining the most suitable
membership functions for ensuring that the above con-
ditions are also met for the values modified by engine
operations.

5.1.1. Quality and quantity of terms
5.1.1.1. In the truth space. First, five linguistic
truth-values naturally emerge from the definition of
a fuzzy logic model Baldwin [1], as shown in Fig.
1. These are “absolutely_false” (af), “false” (f), “un-
decided” (u), “true” (t) and “absolutely_true” (at)
[1,9]. Hence, they will have to belong to the set to be
adopted. This implies that the problem of defining the
term set is circumscribed to the best choice of the val-
ues to be intercalated between the above five values.
The following conditions should be imposed on the
linguistic terms to be adopted and their respective
fuzzy sets in order to solve the qualitative problem:

(1) That they are normalised subsets.

(2) That they have an easy semantic interpretation.

(3) That if a truth value emerges out of the adopted
set as a result of non-closed logic operations, the
determination of its greater or lesser falsehood
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He(V)

undecided

absolutely_false \

| — true
| —— absolutely_true

| fdse

v
1

Fig. 1. Linguistic truth values.

or truth with respect to any other value, whether
or not it belongs to the adopted set, is neither
imprecise nor too complex.

(4) That they produce a progressive and ordered
TFM, from the value “false” up to the value
“true” of bi-valued logic, and also meet the con-
ditions adopted in the universes of discourse.

(5) That the respective membership functions are
easily represented and implemented computa-
tionally.

(6) That they make up a symmetric term set, with
respect to the value “undecided”.

Concerning the quantitative problem, experience
has shown that human beings cannot discern many
more than nine levels. Therefore, so as to make as finer
decomposition as possible and satisfy the first part of
condition (4), the number of terms should be odd and
symmetric with respect to the value undecided, and
the first integer that meets these conditions is nine. So,
four values, two and two, respectively on either side
of the values false and true, must be added to the five
values mentioned at the beginning of this point, and
these can be defined as fairly-false and very-false, on
either side of false and fairly-true and very-true on
either side of true.

5.1.1.2. In the universes of discourse. It is clear
from Section 1 that some new approach should be de-
veloped in order to enable the implementation of sys-
tem applications such as the ones addressed by this
paper, where we are looking for as much domain inde-
pendence as possible, as well as good computational
efficiency. An interesting approach to the universes of
discourse problem is, on the one hand, to adopt the
same linguistic term set for all universes and, on the

other hand, to incorporate a dictionary in each knowl-
edge base, adapted to the domain in question in order
to provide a user-friendly interface and be able to in-
teract with the system using the usual linguistic values
of the universe of discourse to which the fact involved
belongs. These are translated by the dictionary to the
values of the adopted term set. If this is the chosen so-
lution, the use of linguistic modifiers should be added
in order to expand the spectrum of permitted values.

Once a decision has been made to adopt a sin-
gle term set, it still remains to define which and
how many linguistic terms should be selected. As
for the truth-values, the solution to the qualitative
problem emerges from the imposition of the con-
ditions to be satisfied by the term set, as discussed
below.

(1) That they are normalised subsets.

(2) That they have an easy semantic interpretation.

(3) That the determination of the relative value with
respect to the other values for all linguistic values
derived from TFM operations is neither imprecise
nor too complex.

(4) That they produce an ITFM that satisfies the fol-
lowing conditions in order to be in accordance
with what should be expected:

(a) ITFM(m;_0n, TEM(m; 0y, 7;)) = T € T,

[t €T, (5.1)

(b) ITEM(m;-6n, TEM(m;_Ad(dy),Tx)) =T € F,

/w €T, (5.2)



(c) ITFM(m; -0y, TEM(m;_Ad"(0n), 7t ) = af,

/€T, n=2, (5.3)

(d) ITFM(m; -6n, TEM(m; 0n,74)) = 1 € F,

Jti €F, (5.4)

(e) ITFM(m;-6n, TEM(m;_Ad(n), %)) = u,

Jti €F, (5.5)

(f) ITFM(m; -on, TFM(m;_Ad"(0n), %)) = u,
fw €F, n =2, (5.6)

where 0, € D =set of linguistic values in universes
of discourse, m;, m; € M = set of linguistic modifiers,
Ad(dy) is the adjacent value to Jy, Ad”(dy) is the nth
adjacent value to Jy, T the subset of true truth val-
ues(truer than “u”), F the subset of false truth values
(more false than “u”).

The meaning of the above condition can be clari-
fied by means of an example of condition (a): ITFM
(very_large, TFM(fairly_large, very_true)) should be
a true truth-value in order to be in accordance with
what should be expected.

(5) That the respective membership functions are
easily represented and implemented computa-
tionally.

In addition to the above conditions, the following
conditions are also recommended.

(6) That they make up a symmetric term set, with
respect to an intermediate value.

(7) That the intermediate linguistic terms have sym-
metric functions with respect to the unitary cen-
tral value and that the extreme linguistic terms
have asymmetric functions: the lowest term hav-
ing a unitary value at zero, and the highest term
having a unitary value at the right end.

(8) That the direct linguistic modifiers in the uni-
verses of discourse be the same as in the truth
space: “fairly”, “very” and “absolutely”, subject
to m;_0 = “ 0 is m;_true”, in order to simplify and
better close all the transformations between the
truth space and the universes of discourse.
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(9) That the inverse linguistic modifiers “not_fairly”,
“not”, “not_very” and “not_absolutely” be ex-
cluded for reasons of semantic and computational
simplicity.

Concerning the quantitative problem, it can be in-
ferred from (6) that the number must be odd. The first
integer that satisfies this condition is three, which is
evidently very low. On the other hand, experience has
shown that seven is excessive for these purposes and
so five values were finally adopted: “medium”, as the
central value, “tiny” and “huge”, as the lowest and
highest values, respectively, “small” between the low-
est and middle values, and “large” between the middle
and highest values. Finally, the total number of stan-
dard values is twenty due to the presence of the three
linguistic modifiers that emerge from the satisfaction
of condition (8).

5.1.2. Membership functions

The solutions adopted in the truth space and in the
universes of discourse, shown under points 5.1.2.1 and
5.1.2.2, respectively, emerged from the analysis of
the conditions and recommendations discussed under
points 5.1.1.1 and 5.1.1.2 and from the study of the
behaviour of operations, analysed under point 5.1.2.3,
especially non-closed operations, as these are the op-
erations that could cause problems if the output func-
tions do not belong to the family of input functions.

5.1.2.1. In the truth space. Pursuant to the above,
a set of nine values 7 was adopted as the linguistic
term set: absolutely-false (af), very-false (vf), false
(f), fairly-false (ff), undecided (u), fairly-true (ft),
true (t), very-true (vt) and absolutely-true (at), of
parabolic functions: p.(v)=v" for the true values and
U-(v)=(1—0)" for the false values. In order to achieve
a progressive TFM, the exponent 3 was adopted for
the values “vf” and “vt”, and % for “ff” and “ft”.

5.1.2.2. In the universes of discourse. The only
set adopted is composed, as shown on the left-
hand side of Fig. 2, by five basic terms o (ziny,
small, medium, large and huge) of trapezoidal
functions that meet the overlapping condition —
(V0) (us(u) =1 = piaaes)(u) =0) —, required to sat-
isfy the ITFM operation conditions (5.1)—(5.6).
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0.8 0.8
0.6 0.6
04 04

0.2 0.2

- fairly

very absolutely

Fig. 2. Combination of parabolic and trapezoidal functions.

Three linguistic modifiers m (fairly, very and abso-
lutely), identical to the truth space modifiers, which
satisfy m_d = 0 is m_true, raise the number of standard
values to twenty. The right-hand side of Fig. 2 shows
each resultant value of this modification, obtained by
applying TFM operations.

It is important to note that the combination of
parabolic functions in the truth space and trape-
zoidal functions with the overlapping condition in
universes of discourse assures that the modified set
has the same supporting set as the baseline set in
TFM operations, as shown in Fig. 2. If polygonal
rather than parabolic functions had been adopted,
the supporting set would not be maintained and
the other values would be totally invaded (which
means that the overlapping condition would not
be satisfied for the modified values), as it can be
seen from the application of expression (4.4) and
from Fig. 3, which shows the functions ug(u) out-
put after applying TFM operations to a linguistic
value of a trapezoidal membership function pp(u)
and the truth value fairly-true, when parabolic
and polygonal functions are adopted for the truth
values.

Inverse linguistic modifiers were not included for
reasons of semantic and computational simplicity.

5.1.2.3. Operations behaviour. The approach to
this study was based on analysing, firstly, whether
or not the operation is a closed operation and, if
not, whether or not its output function belongs to the
adopted family of functions.

(a) Closed operations: Negation, conjunction and
combination of evidence belong to this class of oper-
ations, as explained below.

Concerning negation, the application of expression
(4.1) to a function which belongs to the term set must

always be another function of the term set, because of
condition (6) of point 5.1.1.1.

With respect to conjunction, the adopted truth
values belong to the class of truth value restrictions
proposed by Baldwin [1] and, hence, the result of
applying expression (4.2) to two or more values is
always the most false value [3], which result is also a
standard function.

As regards combination of evidence, it follows from
point 4.3 that there are only three precisely defined
cases of combination, as per cases (a), () and (y)
of the logic model. The consistency case (o) arises
when only similar values are processed. The case of
partial inconsistency (f3) arises when there is at least
one value close to similar values. The case of total
inconsistency () arises when there is at least one pair
of neither similar nor close values. It follows from
the above and point 5.1.2.2 that the outputs of this
operation are: the most restricted value in case (o)
and the disjunction of close values in case (f3). It is
impossible to output anything in case (7).

(b) Non-closed operations: All other engine opera-
tions, corresponding to modus ponens, ITFM and TFM
fall into this class. Modus ponens delivers polygonal
rather than parabolic functions when outputting truth
values between the value undecided and the value true,
as follows from the application of expression (4.3)
[1,9]. ITFM meets the conditions under point 5.1.1.2,
but it does not deliver parabolic functions when out-
putting false values (conditions (5.2) and (5.4)), as
follows from applying expression (4.5) to the cases in
question. TFM delivers non-standard functions. How-
ever, very importantly, it maintains the same support-
ing set as the baseline value for modifications like
TFM(m_0, 1), where t belongs to the subset of false
values, as follows from the application of expression
(4.4) to such cases.



T By (V) T Hp (U)/pg(U)

1 1
08 0.8
06 0.6
0.4 0.4
0.2 0.2
0

197

T Hye (V) T Hp (W)/pg(u)

1 1
08 0.8
0.6 0.6
04 0.4

0.2 0.2

0+ 0
0 05 1 0

Fig. 3. Output ugr(u) functions.

(¢) Parabolic approximation: As a result of the
above, every time that a modus ponens rule of in-
ference or ITFM operation generates a non-parabolic
function g(v), this function has to be replaced by the
parabolic function that determines the same area as
g(v) in the real interval [0, 1], and thus all truth values
will have parabolic functions. This parabolic approx-
imation means that, for the modified values, the be-
haviour of the operations will be unchanged and the
conditions will be met.

5.2. Linguistic approximation

Any linguistic approximation process should an-
swer two questions: when and how it should be car-
ried out it. There are two alternative answers to the
when question. One, referred to as the first alterna-
tive, involves approximating after each final conclu-
sion, while the other, the second alternative, involves
approximating after each non-closed operation. The
first alternative outputs more reliable results, although
it is less efficient. The second alternative, on the other
hand, has the disadvantage that the approximation er-
ror increases through rule chaining. However, it has
an important advantage of computational efficiency,
since only standard values are processed, which means
that pre-computed tables can be implemented instead
of algorithms to calculate the operations. Having com-
pared the use of both alternatives, we found that, ex-
cept for a very few cases, the results do not differ,
even with three inference levels.

The answer to the sow question is approximation
procedures. The closeness criterion in both the truth
space and the universes of discourse is minor area
difference in the interval concerned.

5.3. Solution to the problem

The development of this inference engine is con-
cluded by presenting the problem and its solution
according to the above considerations. Point 5.3.1 ad-
dresses the first alternative and point 5.3.2, the sec-
ond alternative. For didactic reasons, the knowledge
base is assumed to have no inconsistent cases as dis-
cussed under points 4.3 and 5.1.2.3 (a). Under these
conditions, the problem addressed in Section 3 is set
out according to the standard values and linguistic
modifiers.

5.3.1. The first alternative
To find the value of 43(X3), from:

(1) (4(Xy)is m,},éjl A—4y(Xy) is m,f,éjz = A3(X3) is
m,?ﬁf) is tl,

(2) (A4(X4) is m,f,éj“ :>A3(X3) is m,f,éjs) is ’L‘izv,

(3) (Ai(Xy) is mp-00) is 7,

(4) (aXa) is m]_0) is 72,

(5) (Aa(Xq) is mi %) is 7,

1

where ' € S is the truth value set, /€ T the subset of
true values, (31»”3 € D the linguistic term set in universes
of discourse and m*€ M the linguistic modifiers set,
where subscripts 7, j, k indicate any value belonging to
the respective set, and superscripts nl,n2,n3 and n4
simply indicate the order in which the value concerned
appears.

By following steps (6)—(9) discussed under
point 4.4, step (10) gives the solution to the above
problem:

(10) A3(X;)is CEd(Ad(TFM(m}_3},  Ap(PPv(Cv
(Ap(ITEM(m} 0!, TFM(m{_5¢, ©)))),Nv(Ap

(ITEM(m} 57, TEM(m{ 6], 77))))), 7)), Ad
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(TEM(m; 67, Ap(PPv(Ap(ITEM(m; 3}, TFM

(m§ 8%, TH)N. 2,

where “Ad” is a linguistic approximation operation in
the universe of discourse and “Ap” a parabolic ap-
proximation operation.

5.3.2. The second alternative

In order to limit the size of the TFM and ITFM
arrays, the problem has to be constrained in this case
so as to ensure that each TFM operation is always
applied to linguistic values without any modifier in
the universes of discourse and to only standard truth
values. For this purpose, linguistic modifiers are only
permitted in facts when the truth value is “true” and
in the antecedent of the rules. It should be noted that
this limitation is not too restrictive in practice, as it
simply rules out doubly imprecise cases like “(4(X)
is m_0) is 17

According to the above, the problem is set out ac-
cording to the second alternative as follows:

Find the value m} 37 of 43(X3) from:

(1) (A](X] ) is m]‘lt,éjl A _\Az(Xz) is m,%,éjz =>A3(X3) is
63)is 1!
J iv?

(2) (As(Xy) is m; 0} = A3(X3) es &) is 13,

(3) (4i(X1) is f) is !,

4) (4(Xy) s 517) is t7,

(5) (4a(Xy) is (3]»8) is 7.

It is important to point out that although TFM is,
generally, a non-closed operation, the constraints im-
posed on this version make it a closed operation and,
hence, it is not necessary to use linguistic approxi-
mation. Thus, it follows that the pre-computed tables
must be constructed for the operations negation, con-
junction, TFM, ITFM with linguistic approximation,
combination of evidence and the modus ponens rule
of inference with linguistic approximation, which are
inferred from the respective expressions under points
4.1-4.3.

From all the above considerations and following
the procedure under points 4.4 and 5.3.1, the solu-
tion to the above problem is obtained in step 10, as
follows:

(10) (43(X3) is CEd(TFM(mi,éf, Av(PPv(Cv(Av

(ITFM(my -0}, TEM(m{ 67, 7}))), Nv(Av(ITFM

(m;-07, TEM(m] 0], <)), 73, )), TEM(m} 67,
AV(PPV(AV(ITFM(m?_6%, TEM(mS _68,1)))),

k=%j> k=Yj>"i
Ti%/)))a

where “Av” represents a linguistic approximation op-
eration in the truth space.

6. Implementation

A version of Prolog was selected for the compu-
tational implementation of the engine, which is both
an interpreter and compiler and also has a suitable C
interface. Being an interpreter and compiler, it pro-
vided for an efficient implementation of the second
alternative, entirely developed in Prolog by means of
a meta-interpreter dedicated to this application. Hav-
ing a suitable C interface, it also provided for an ef-
ficient implementation of the first alternative, which
was based on the same meta-interpreter, developed in
C, from which the algorithms of the operations in-
volved are called.

As far as knowledge representation is concerned,
predicates named “is1” and “is2” were used to handle
uncertainty and imprecision, respectively. Therefore,
a general fact like “(A(X) is m_d) is t” is represented
by the clause:

is1(is2(a(x),m-9), )

and a general rule like “(4;(X7) is m_0; = A>(X2) is
my_0,) is 17 is represented by the clause:

is1(is2(a2(x2),m2_02),7): -is2(al(x1),m1_51).

Finally, a fact with a crisp proposition like “p is 7
is represented by the clause “is1( p,7)”.

7. Experimentation

Each of the two versions of the inference engine
were incorporated into backward-chaining automatic
theorem-prover programs. A series of executions of
the system based on the second alternative, entirely
developed in Prolog, are discussed below. They show
the different cases of consistency, partial inconsistency
and total inconsistency that can arise in respect of
the cases (o), (f) and () described under points 4.3



and 5.1.2.3 (a). The examples were put together by
means of a generic base, which is shown below.

is1(is2(al(x1), huge), vt) :- not(is2(a2(x2), tiny)),
is2(a3(x3), f_small).

isl1(is2(al(x1), huge), at):-is2(a4(x4), v_large).

is1(is2(al(x1), large), ) :- p5, is2(a6(x6), small).

isl(is2(al(x1), small), at) :-not( p7).

is1(p8, at):- p9.

is1(is2(al0(x10), large),?) :-is2(al(x1), huge).

is1(is2(al0(x10), large), vt) :-not(pll),
is2(al(x1), f _large), p8.

is1(is2(a10(x10), medium), at) :- p12.

is1(is2(a10(x10), small), ft):-is2(al(x1), v_small),
not(is2(a13(x13), v_tiny)).

is1(is2(a10(x10), small), at) :- p14.

The examples shown below are ordered from
consistency, through partial inconsistency, to total
inconsistency. Example (a) is a case of consis-
tency: alO(x10) is f_large and al0(al0) is large.
Example (b) is a case of partial inconsistency, where
the deduction is continued after a partial inconsis-
tency in intermediate conclusions (al(x1) is v_huge
and al(x1) is large), is equivalent to adopting the
union of the sets as combination. Example (c) is
a case of partial inconsistency in the final conclu-
sions: al0(x10) is f_large and @10(x10) is medium.
Examples (d) and (e) are cases of total incon-
sistency. Firstly, example (d) illustrates total in-
consistency in intermediate conclusions (al(x1) is
v_huge and al(x1) is abs_small) and, secondly, ex-
ample (e) total inconsistency in final conclusions
(al0(x10) is f_large and al10(x10) is abs_small).
The reasoning and, hence, all the conclusions are
fully invalid in the last two examples. Therefore,
it is possible to assert nothing about the value of
alO(x10).

In all cases, the information entered by the user is
written in italics.

(a) Consistency

(1) Write the CONJECTURE:
2is2(al10(x10), Value).

(2) Write the known FACTS:
- is2(a2(x2), large.
- is2(a3(x3), v_small).
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- is2(a4(x4),abs_large).
- stop.

(3) Intermediate conclusion:
al(x1) is v_huge

(4) Partial final conclusion:
al0(x10) is f_large

(5) Intermediate conclusion:
al(x1) is abs_huge

(6) Partial final conclusion:
al0(x10) is large

(7) FINAL CONCLUSION:

al0(x10) is large
yes

(b) Partial inconsistency by intermediate
conclusion

(1) Write the CONJECTURE:
2is2(al10(x10), Value).

(2) Write the known FACTS:
- 152(a2(x2), large).
- is2(a3(x3),v_small).
-isl(pll,af).
- is1( p5, at).
- is2(a6(x6),abs_small).
- is1(p9,1).
- stop.

(3) Intermediate conclusion:
al(x1) is v_huge

(4) Partial final conclusion:
al0(x10) is f_large

(5) Intermediate conclusion:
al(x1) is large

(6) Intermediate conclusion:
p8 is vt

(7) Partial final conclusion:
al0(x10) is large
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(8) FINAL CONCLUSION:
al0(x10) is large

yes

(c) Partial inconsistency by final conclusion

(1) Write the CONJECTURE:
2is2(al0(x10), Value).

(2) Write the known FACTS:
- is2(a2(x2), large).
- is2(a3(x3),v_small).
-is1(pl2,¢).
- stop.

(3) Intermediate conclusion:
al(x1) is v_huge

(4) Partial final conclusion:
al0(x10) is f_large

(5) Partial final conclusion:
al0(x10) is medium

(6) Knowledge base is PARTIALLY
INCONSISTENT.
FINAL CONCLUSION
is undecided between:
al0(x10) is:
EITHER f large
OR medium

yes

(d) Total inconsistency by intermediate
conclusion

(1) Write the CONJECTURE:
2is2(al10(x10), Value).

(2) Write the known FACTS:
- is2(a2(x2), large).
- is2(a3(x3),v_small).
-isl(pT,af).
- Stop.

(3) Intermediate conclusion:
al(x1) is v_huge

(4) Partial final conclusion
al0(x10) is f_large

(5) Intermediate conclusion:
al(x1) is abs_small

(6) Above CONCLUSIONS
are NOT VALID.
Knowledge base is
FULLY INCONSISTENT.
al(xl)is:

EITHER v_huge
OR abs_small
Then it is possible to assert
nothing about
al0(x10)
no

(e) Total inconsistency by final conclusion
(1) Write the CONJECTURE
2is2(al0(x10), Value).

(2) Write the known FACTS:
- is2(a2(x2), large).
- is2(a3(x3),v_small).
- isl(pl4,at).
- Stop.

(3) Intermediate conclusion:
al(x1) is v_huge

(4) Partial final conclusion:
Then it is possible to assert
nothing about ¢10(x10)
al0(x10) is f_large

(5) Partial final conclusion:
al0(x10) is abs_small

(6) Above CONCLUSIONS are
NOT VALID.
Knowledge base is
FULLY INCONSISTENT.
al0(x10) is:
EITHER flarge
OR abs_small

no



8. Conclusions

This paper proposes a solution to the development
of fuzzy logic-based inference engines oriented to ES,
which, for the first time, effectively and efficiently
solves the problem of uncertain and imprecise reason-
ing based on a full fuzzy logic devoted to ESs, whose
sole limitation is that it excludes imprecise quantifiers.
Therefore, it solves the problems of computational
inefficiency, knowledge domain dependency and com-
bination of evidence that have been an obstacle to suc-
cessful application of a full fuzzy logic to ESs.

The solution proposed by this paper to the above
problem is based on:

1. The logic model is a generalisation of Lukasie-
wicz’s infinite multi-valued logic, confined to the
goal of being a model devoted to rule-based ESs,
and operates in the truth space. For the combina-
tion of evidence, the model extends Dubois and
Prade’s approach for the possibilistic model to
fuzzy logic. This model always leads to realistic
results and to only three precisely defined cases
of consistency, partial inconsistency and total
inconsistency.

2. A term set of nine linguistic values with parabolic
functions is used in the truth space, and the same
term set of five linguistic values with trapezoidal
functions (which meet a suitable overlapping con-
dition to assure that ITFM operations output re-
sults that are in accordance with what should be
expected), plus the same three linguistic modifiers
as in the truth space are used in each universe of
discourse. Truth values with parabolic functions
make sure that TFM operations output values with
the same supporting set as the baseline set, which
means that the above values also meet the over-
lapping condition. Hence, ITFM also outputs re-
sults that are in accordance with what should be
expected, using modified values. As the analysis of
the behaviour of the engine operations showed that
modus ponens and ITFM were non-closed opera-
tions and could output non-parabolic functions, it
was decided to perform a parabolic approximation
operation after carrying out each of these opera-
tions. TFM can also output non-standard functions,
but maintains the same supporting set, which obvi-
ates any problem.
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3. The use of the same linguistic term set with
modifiers in all universes of discourse makes the
inference engine operation easier and largely inde-
pendent from the knowledge domains.

4. The feasibility of including a dictionary in knowl-
edge bases provides for the use of the usual
terminology of each domain and also a user-
friendly interface.

The combination of the solutions attained in the truth
space and universes of discourse, together with the
selected logic model, provides for an efficient com-
putational implementation, even with large inference
chains and rules with complex antecedents, and out-
puts results that are in accordance with what should
be expected in ITFM operations. Moreover, it allows
the implementation of a very efficient version that
employs pre-computed tables instead of the operation
algorithms, involving a small constraint on the use of
linguistic modifiers and a loss of reliability when in-
ference chains are longer than three links.

Future research and development areas will be di-
rected, on the one hand, at adding imprecise quanti-
fiers, after conducting a detailed analysis of the logic
model and its respective computational processing.
Apart from completing the model, this will make it
possible to increase expressiveness for certain propo-
sitions. On the other hand, concerning the extension
of the system developed, there are the two obvious ex-
tensions for an inference engine such as is presented
here: firstly, its incorporation into an ES development
and consultation tool and, secondly, the incorporation
of a natural language interface to the above tool. The
availability of such a tool will evidently enable per-
formance of the necessary field trials to arrive at a re-
alistic and reliable evaluation of this type of systems.
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