
∗Department of Computer Science, FCEFQyN, University of Rio Cuarto, Argentina
†National Council for Scientific and Technical Research (CONICET), Argentina

‡Department of Software Engineering, Buenos Aires Institute of Technology, Argentina
§SnT, University of Luxembourg, Luxembourg

Abstract—We present a technique to distinguish valid from
invalid data structure objects. The technique is based on building
an artificial neural network, more precisely a binary classifier,
and training it to identify valid and invalid instances of a
data structure. The obtained classifier can then be used in
place of the data structure’s invariant, in order to attempt
to identify (in)correct behaviors in programs manipulating the
structure. In order to produce the valid objects to train the
network, an assumed-correct set of object building routines is
randomly executed. Invalid instances are produced by generating
values for object fields that “break” the collected valid values,
i.e., that assign values to object fields that have not been
observed as feasible in the assumed-correct executions that led
to the collected valid instances. We experimentally assess this
approach, over a benchmark of data structures. We show that this
learning technique produces classifiers that achieve significantly
better accuracy in classifying valid/invalid objects compared to a
technique for dynamic invariant detection, and leads to improved
bug finding.

I. INTRODUCTION

Given the current advances in automated program analysis,

it is now possible to efficiently produce large sets of pro-

gram inputs, as well as examining very large sets of pro-

gram executions [8], [14], [29], [30], but effectively deciding

whether the behavior of software is correct or not remains a

problem in this context, that mainly depends on the provi-

sion of software specifications (i.e., specified oracles in the

terminology of [6]). Various researchers have acknowledged

this issue, and developed techniques that are able to derive
specifications that are implicit in the software being assessed.

Examples of techniques that derive specifications implicit in

code are Daikon [13], JWalk [38], and related tools [10],

[37]. Daikon produces a set of candidate properties from a

program definition, and infers likely invariants by observing

program executions, and checking which of the candidate

properties were not “falsified” (violated) by any execution

[13]. JWalk also infers properties from program executions,

but it does so by interacting with the user to confirm “learned”

observations, to incrementally produce a test oracle. While

both tools are very powerful, they have limitations. Daikon is

limited to relatively simple program properties, and complex

structural constraints such as acyclicity are beyond the scope

This work was partially supported by ANPCyT PICT 2015-2341, 2015-
0586, 2015-2088, 2016-1384, 2017-1979, 2017-2622; and by the IN-
TER/ANR/18/12632675/SATOCROSS.

of the technique [13]. JWalk also shares this limitation, and

the learned oracles are more “scenario-specific”, i.e., closer to

test assertions, than those produced by Daikon [38].

In this paper, we deal with the specification inference

problem, in a way similar in motivation to techniques like

Daikon and JWalk, but targeting object validity classifiers

for complex objects, like class invariants [25], [22] for data

structures. Our technique differs from the mentioned ones

in several respects. Firstly, it is based on the use of neural

networks [34] for learning classifiers from valid and invalid

objects, obtained from program executions. This implies that

learned classifiers are not formed by explicit constraints that

the user can inspect, as opposed to traditional class invariants;

but at the same time, our classifiers are able to recognize more

complex data representation properties, in particular structural

properties of heap-allocated linked data, that other techniques

cannot handle. Secondly, we concentrate on object classifiers

for bug detection, so our aim is to produce classifiers that

tend to “over-approximate” data structure invariants, i.e., that

identify invalid objects with high precision and recall. Thirdly,

as opposed to other techniques that infer properties from

dynamic information, our approach requires inferring such

properties from positive as well as negative cases (notice that

both Daikon and JWalk only consider positive cases, since

they explore executions of supposedly correct software to infer

likely program properties). Positive cases are those that the

classifying function we want to learn should satisfy, while

negative ones are invalid instances, i.e., objects for which the

classifier should return false. To produce positive cases, we

assume correct a set of object builders, e.g., constructor and

insertion routines, and use these to produce programs that

build valid instances of the data structure of interest. This

is a standard approach in various contexts, in particular in

some program verification and test generation techniques [28],

[24], [20] (Daikon and JWalk in essence also work under this

assumption). On the other hand, negative inputs are produced

as follows. As valid instances are generated, the observed

extensions of class fields, composed of all observed values

for each field, are collected; then, invalid instances are gen-

erated by exploiting these field extensions, by producing new

instances in which a field is given a value that is either outside

the corresponding field extension (and thus guaranteeing that

is indeed a new object), or within the extension, but whose

Training Binary Classifiers as Data Structure 
Invariants

Facundo Molina∗†, Renzo Degiovanni§, Pablo Ponzio∗†, Germán Regis∗, Nazareno Aguirre∗†, Marcelo Frias†‡



value has not been seen in combination with the rest of the

instance being altered, within the valid ones.

We evaluate our learning approach in several ways. First,

we assess the adequacy of our approach to generate invalid

objects, analyzing how many of our assumed-invalid produced

instances are indeed invalid (violate a provided invariant).

Second, we take a benchmark of data structures for which

class invariants and object builders (constructors and insertion

routines) are provided; we generate object classifiers using

the provided builders, and evaluate their precision and recall

against the corresponding invariants on valid and invalid in-

puts, as is customary in the context of automated learning [34].

In this context, we compare our technique with Daikon [13], a

tool for dynamic invariant discovery. Finally, we also compare

our object classifiers with invariants produced by Daikon, in

bug finding through test generation, for a number of case

studies involving data structures, taken from the literature:

schedule from the SIR repository [12], an implementa-

tion of n-ary trees in the ANTLR parser generator, a red-

black tree implementation of integer sets introduced in [42],

binary search trees and binomial heaps from the evaluation

performed in [14], and fibonacci heaps from the graphmaker

library [1]. Our experiments show that our mechanism for

producing invalid inputs is effective, and that the learned

classifiers achieve significantly better accuracy in identifying

valid/invalid instances, compared to Daikon (high precision

and recall both in negative and positive cases). Moreover,

learned classifiers allow a test generation tool to catch bugs,

if classifiers are used in place of invariants, that the same tool

cannot detect if the invariants produced by Daikon are directly

used instead, indicating that learned classifiers are not trivial.

II. BACKGROUND

A. Class Invariants

One of the keys of object orientation is the emphasis that

this programming paradigm puts into data abstraction [22].

Indeed, the concept of class is a useful, direct mechanism to

define new datatypes, that extend our programming language’s

set of predefined types with custom ones that allow us to

better capture or deal with concepts from a particular problem

domain. A class defines the type of a set of objects, whose

internal representation is given by the fields that are part of the

class definition. This implementation of a new data abstraction

in terms of provided data structures is often accompanied by

a number of assumptions on how the data structure should

be manipulated, that capture the intention of the developer

in his chosen representation. These assumptions are often

implicit, since they are not a necessary part of the definition

of the data representation, in most programming languages

[22]. Consider, as an example, a representation of sequences

of integers, implemented using heap-allocated singly-linked

lists. The classes involved in this data abstraction are shown in

Figure 1. Clearly, solely from the class’s fields one cannot infer

the intention of the developer in the representation. Whether

these lists are going to be arranged cyclicly, acyclicly, with or

without sentinel node, with reserved nodes for some special

public class SinglyLinkedList {
private Node head;
private int size;
...

}

public class Node {
private int value;
private Node next;
...

}
Fig. 1. Java classes for singly linked lists.

L0

N0

0

size: 0

head

L0

N0

0

size: 1

head

2

N1

L0

N0

0

size: 1

head

1

N1

L0

N0

0

size: 2

head

2

N1 N2

1

L0

N0

0

size: 2

head

2

N1 N2

2

L0

N0

0

size: 2

head

2

N1 N2

2

L0

N0

0

size: 3

head

2

N1 N2

2

N3

2

L0

N0

0

size: 1

head

1

N1

Fig. 2. Valid acyclic singly linked lists with dummy node.

information, etc., are all issues that are not an explicit part

of the class’s internal definition, although, of course, one may

infer such information from how the internal representation is

used by the methods of the class.

A class invariant [25], or representation invariant [22],

is a predicate inv that, given an object o of class C, states

whether o is a valid representation of the concept that C
captures or not. Equivalently, inv can be described as a boolean

classifying function that decides whether an object o satisfies

the representation assumptions in the implementation of C.

For instance, assume that the programmer’s intention with

singly linked lists is to represent sequences of integers using

acyclic linked lists, with a dummy (sentinel) node [23], where

size must hold the number of elements in the sequence,

i.e., it must coincide with the number of non-dummy nodes

in the list. Samples of valid lists, under this assumption, are

shown in Figure 2. The invariant for SinglyLinkedList
should then check precisely the above constraint, i.e., it must

be satisfied by all instances in Fig. 2, and must not hold for,

say, cyclic lists, lists where head is null, or where the dummy

node has a value different from 0, or where the size field

does not hold the number of non-dummy nodes in the list.

Class invariants can be captured using different languages.

The Eiffel programming language [26], in particular, includes



public boolean repOK() {
if (this.head==null) return false;
if (this.head.value!=0) return false;
int expectedSize = this.size+1;
int currNode = this.head;
while (expectedSize>0 && currNode!=null) {

expectedSize--;
currNode = currNode.next;

}
return (expectedSize==0 && currNode==null);

}
Fig. 3. Java invariant for acyclic singly linked lists.

built-in support for expressing class invariants as assertions

under a specific invariant clause. Other languages support

design-by-contract [25] and assertions, invariants among them,

via special languages and libraries, such as JML [9] for Java

and Code Contracts [5] for .NET. Languages such as Alloy

[17] have also been employed to express class invariants, as

done, e.g., in [19]. Finally, various programming methodolo-

gies (e.g., [22]) and analysis tools (e.g., [29], [8]) can exploit

class invariants expressed as Java predicates, i.e., via boolean

methods that check internal object consistency. Figure 3 shows

the class invariant for our singly linked list example, expressed

as a Java predicate.

In this paper, we will be capturing close approximations

of class invariants for data structures through artificial neural

networks, that, as a consequence, will not be formed by

explicit constraints, as in the example in Fig. 3.

B. Field Extensions

Various tools for program analysis that employ SAT solving

as underlying technology adopt a relational program state

semantics (e.g., [11], [14]). In this semantics, a field f at a

given program state is interpreted as the set of pairs 〈id, v〉,
relating object identifier id (representing a unique reference to

an object o in the heap) with the value v of the field in the

corresponding object at that state (i.e., o.f = v in the state).

Then, each program state corresponds to a set of (functional)

binary relations, one per field of the classes involved in the

program. For example, fields head and next of a program

state containing the singly linked list at the top right of Fig. 2

is represented by the following relations:

head = {〈L0,N0〉}
next = {〈N0,N1〉, 〈N1,N2〉, 〈N2,N3〉, 〈N3, null〉}

Notice that in the lists in Fig. 2, we have consistently

identified the objects involved in each example. Although

in this example it is not evident, due to the linear nature

of the structure, we choose to identify each object by the

order in which it is visited in a breadth-first traversal of

the corresponding structure, using different identifier sets for

different classes (Li for lists, Ni for nodes, etc.). Adopting

this notion of object identifier allows us to have a canoni-

cal (isomorphism-free [18]) representation for each structure

shape (a similar symmetry breaking approach is also present

in other approaches, e.g., [8]).

The notion of field extension is associated with a set
of objects or program states. It essentially corresponds to

joining the above-described relational interpretation of fields,

for various objects or program states. For instance, for the set

of lists in Fig. 2, the extensions for fields head and next
are the following:

head = {〈L0,N0〉}
next = {〈N0,N1〉, 〈N0, null〉, 〈N1,N2〉, 〈N1, null〉,

〈N2,N3〉, 〈N2, null〉, 〈N3, null〉}
This notion of field extension is related to the concept of

(upper) bound in KodKod [39], used with the purpose of

optimizing the relational representation of fields in Alloy

analyses. Technically, field extensions are partial bounds, in

the KodKod sense.

When field extensions are built from valid objects, they

capture the set of values for fields that have been identified

as being feasible, in the sense that at least one observed

structure admits each value in the corresponding extension. We

will use these extensions to attempt to build invalid objects,

e.g., considering pairs that are not in field extensions. This

demands defining a complement for the field extensions, for

which we have to consider domains and codomains for these

relations. This is typically achieved in the context of bounded

analysis by a notion of scope, in the sense of [17]. The scope,

often simplified as a number k, defines a maximum number of

objects for each class Ci, and finite ranges for basic datatypes

(usually as a function of k). For a given scope k, the set of

all possible structures or instances is composed of all possible

assignments of values within the scope, for fields of the scope’s

objects, respecting the fields’ types, and thus provides us with

a notion of universe for the field extensions. For instance, if

the scope for our analysis is 1 list, up to 5 nodes, size in the

range 0..5 and values in the range 1..5, then pair 〈N3,N4〉 is

in the complement of the extension of next, whereas if we

instead consider up to 4 nodes, it is not.

C. Feed-Forward Artificial Neural Networks

Artificial Neural Networks (ANNs) are a state-of-the-art

technique underlying many machine learning problems. These

algorithms offer a number of advantages, including their

remarkable ability to implicitly detect complex nonlinear

relationships in data, that are otherwise very complex to

be noticed. An ANN is composed of a group of different

nodes, called neurons, connected by directed weighted links.

Each neuron is a simple computational unit that computes

a weighted sum of its inputs, and then applies an activation

function g to produce an output, that will be an input of another

neuron.

Neurons can be disposed respecting certain network ar-

chitectures. In particular, in a feed-forward neural network,

neurons are typically organized in layers. Each neuron in a

layer has a link to each neuron of the next layer, forming a

directed acyclic graph. The first layer is the input layer, and its

neurons receive a single value as an input, and simply replicate

the received value through their multiple outputs, to the next

layer. The final layer is the output layer and its neurons



produce the output of the network computation. In addition

to these two layers there can be any number of intermediate

layers, called hidden layers. Often, neural networks will have

one hidden layer, since one layer is enough to approximate

many continuous functions [34].

The behavior of a neural network can be dynamically

altered, by changing the weights associated with the links in

the network, or by modifying some of the neural network so-

called hyperparameters, such as the number of neurons in the

hidden layer. Assume that we want an artificial neural network

to approximate a function f , and that we can characterize the

inputs of f as a vector of values (to be fed in the input layer).

Provided that one has a set of inputs for which the desired

output is known (i.e., a set of known input-output pairs for

f ), one can train an artificial neural network to approximate

function f , by analyzing the difference between the expected

output and the output obtained from the network for a known

input, and producing (slight) changes to the weights so that, if

the network would be fed with the same input again, its output

would be “closer” to the expected output [34] (a mechanism

that is often employed for this task is backpropagation). This

approach is known as supervised learning, and when the

output has only two possible values, it is a binary classification
problem. The problem we deal with in this paper, namely the

approximation of a class invariant to classify valid vs. invalid

data structure objects, clearly falls in the category of binary

classification: we want to learn a function f that sends each

valid instance to true, and each invalid instance to false. We

will then need both valid and invalid instances, to appropriately

train a neural network to learn a class invariant. Section IV

describes the details of our technique.

III. AN ILLUSTRATING EXAMPLE

Let us provide an overview of our approach, through an

illustrating example. Consider the Java implementation of

sequences of integers, over singly linked lists, discussed earlier

in this paper. We would like to check that this list imple-

mentation behaves as expected. This includes guaranteeing

that all public constructors in SinglyLinkedList build

objects that satisfy the previously stated class invariant [22],

and public methods in the class (that may include various

methods for element insertion, deletion and retrieval) preserve

this invariant. That is, they all maintain acyclicity of the list,

with its number of nodes from head.next coinciding with

the value of size, etc. If we had this invariant formally

specified, we may check that it is indeed preserved with the aid

of some automated analysis tools, e.g., some run-time assertion

checker as that accompanying the JML toolset [9], or a test

generation tool like Randoop [29]. But getting these invariants

right, and specifying them in some suitable language, even

if the language is the same programming language of the

program implementation, is difficult, and time consuming, and

one does not always have such invariants available.

We would then like to approximate a class invariant inv :
C → Bool using a neural network, from the implementation

of C. In order to do so, we need to train the neural network

L0

N0

1

size: 0

head

L0

N0

1

size: 1

head

2

N1

L0

N0

0

size: 1

head

L0

size: 2

head

L0

N0

0

size: 2

head

2

N1 N2

2

L0

N0

0

size: 2

head

2

N1 N2

2

L0

N0

0

size: 3

head

2

N1 N2

2

N3

1

L0

N0

0

size: 1

head

1

N1

Fig. 4. Potentially invalid list structures, built by breaking field extensions.

with a sample for which we know the correct output. In

other words, we need to train the neural network with a set

of valid instances, i.e., objects that satisfy the invariant (or,

equivalently, for which the invariant should return true), as

well as a set of invalid instances, i.e., objects that do not satisfy

the invariant (for which the invariant should return false). In

order to do so, we will ask the user to provide a subset of the

class’s methods, that will be used as assumed-correct builders,

i.e., as methods that allow us to build correct instances. For

instance, in our example the user may trust the implementation

of the constructor and the insertion routine, and thus all objects

produced with these methods are assumed correct. Using these

builders we can construct assumed-correct instances, by using,

e.g., an automated test generation tool such as Randoop. A

particular set of valid instances that we may obtain from this

process could be the objects in Fig. 2.

Building invalid instances is more difficult. We may ask the

user to manually provide such cases, but the number of objects

necessary to appropriately train the network would be large,

and thus this approach would seriously limit the efficacy of

the approach. We may also ask the user to provide methods to

build incorrect objects, but this would mean extra work (it is

not something that the user has already at hand), and providing

such methods is not, in principle, easy to do. Instead, our

approach is based on the use of field extensions. We proceed as

follows. We have already run some input generation tool using

the builders for some reasonable amount of time, and have

obtained a set of valid objects of class SinglyLinkedList.

From these objects we can compute the field extensions for

each field of the data structure. The extensions for head and

next are shown in the previous section; the extensions for

size and value are the following:

size = {〈L0, 0〉, 〈L0, 1〉, 〈L0, 2〉, 〈L0, 3〉}
value = {〈N0, 0〉, 〈N1, 1〉, 〈N1, 2〉, 〈N2, 1〉, 〈N2, 2〉, 〈N3, 2〉}



source 
program

ANN

Instances generation Learning phase

object 
classifier

positive 
cases

negative 
cases

field extensions 
computation and 
object breaking

execution of 
assumed-correct 

code

Instances as vectors

positive 
vectors

negative
vectors

vector 
generation

Fig. 5. An overview of the technique

We will build potentially invalid instances by changing field

values in valid structures. We have two possibilities for a

change in a given object field: we can go “outside” the exten-

sions, i.e., assign a value to the field that has not been observed

in any of the built valid structures (and thus guaranteeing that

is a new object), or go “inside” the extensions, i.e., assign

a value different from the original, but within the feasible

“observed” ones for the field. In the former case, we need

to define a scope, so that being “outside” the extension can

be precisely defined. Assume, for the sake of simplicity, that

we arbitrarily define the following scope: exactly one list

object (L0), 4 nodes (N0, . . . , N3), size in the range 0..3

and value in the range 0..2. Now, we can build (allegedly)

invalid instances by changing, for each valid structure, a value

of some reachable field to some different value, outside the

corresponding extension, or within it but different from the

original. In Fig. 4 we show a sample of potentially invalid

instances obtained from those in Fig. 2 using this mechanism.

A few issues can be noticed from these examples. First,

there is no guarantee that we actually build invalid instances

with this process. The top right object in Fig. 4 is in fact a valid

case. Artificial neural networks are however rather tolerant to

“noise” during learning, so as long as the number of spurious

invalid objects is low, learning may still work well. Second,

what we are able to build as potentially invalid instances

greatly depends on what we produced as valid ones, and what

we define as the scope. Both issues are critical, and we discuss

these further in the next section. Third, the specific mechanism

for choosing a value within the corresponding field extension

or outside it, is not specified. One may randomly choose on

which direction to go, and with which proportion to go inside

or outside the extensions. Intuitively, going “outside” the field

extensions has better chances of producing invalid structures.

IV. THE TECHNIQUE

Let us now present in more detail our approach to ap-

proximate class invariants using artificial neural networks.

The technique, depicted in Fig. 5, has three main steps:

(i) automatically generating valid and invalid data structure

objects, (ii) representing objects of the class (both valid and

invalid) as numerical vectors, to be able to feed these to a

neural network, and (iii) building an artificial neural network,

and training it with the produced valid and invalid objects, to

learn to classify data structure instances as valid or invalid.

A. Generating Instances for Training

Assuming that we are given a class C for which we want to

learn to classify valid vs. invalid data structure objects, our first

step consists of generating instances that must and must not

satisfy the intended invariant, respectively. As we mentioned

before, our first assumption is that a set m of methods of

C is identified as the assumed-correct builders of the class,

i.e., a set of methods whose implementations are assumed

correct, and that thus can be used to build valid instances.

This assumption is in fact rather common in verification

and test generation environments, that produce instances from

a class’s public interface (see, e.g., [20], [28], [24]). Our

second assumption is that a notion of scope is provided (see

previous section for an intuition of this requirement). The

scope provides a defined domain for each field of each class

involved in the analysis, and thus provides a domain where

to search for field values when building potentially invalid

objects from valid ones. The scope is not only relevant in

defining a finite universe to compute the complement of field

extensions (useful in building invalid instances); it also bounds

the instances to be considered, allowing us to characterize

them as fixed-size vectors (see next subsection).

In order to build valid instances, any input generation

technique that can produce objects from a class interface, is

suitable, including model checking based ones [20], [15], and

random generation [29], [27], for instance (in our experiments

we will use random generation). Using the produced valid in-

stances, we compute field extensions and generate potentially

invalid instances by modifying valid ones, as follows: given a

valid instance c, an object o reachable from c and a field f
in o, we change the value of o.f to either a value within the

extension of f with respect to o, or outside it but within the

scope. The latter is favored since it exploits field extensions

guaranteeing that a new object is constructed. From each valid

structure, we produce as many invalid objects as object fields

are reachable in the structure, using the above procedure to

change a single object field in each case. Choosing to go

within extensions or outside them can be done randomly.

In our experiments, we change an object field going within

the extensions with a probability of 0.2, and outside these

with a probability of 0.8. The rationale for the selection is

based on experimentation; we tried, for small scopes, different

probabilities (and these were the ones that achieved better per-

formance). When an object is changed, nodes are “relabeled”

to preserve the breadth-first canonical ordering mentioned in

section 2. Finally, we discard any potentially invalid object

generated with the above procedure, that is also within the set

of valid objects, so that there is no intersection between the

valid and invalid objects used for training the network.

The generation technique for valid inputs is related to how

the scope is chosen. Some techniques require the scope a
priori for generation (e.g., [15]), while in others the scope

can be derived from the generated instances, e.g., looking at

the largest produced object, or the range of produced values.

Intuitively, the scope should be at most “slightly loose” with



3 1 0 2 2 3 2 4 2 0{ { { { {

L0 N0 N1 N2 N3

size head val. next val. next val. next val. nexte head val next val next val next v

range 0..4 for null, N0, …, N3

Fig. 6. Instance vector for a Singly Linked List example.

respect to the field extensions corresponding to the generated

valid instances, in the sense that, when building invalid objects,

it should prevail to form field associations that are not part of

any valid object, but that involve values that are part of valid

objects. In our experiments, we chose the scope a priori, and

discarded any randomly generated object that lied outside the

scope.

B. Representing Instances as Vectors

Neural networks receive as inputs vectors of values, which

are in general restricted to numeric types. While for some

datatypes an encoding is direct (e.g., characters, enumerated

types, strings of a maximum length), for objects of an arbitrary

class C it is less straightforward. In order to encode object

states as vectors, we adopt the candidate vector format of Korat

[8]. Given a scope k, that defines ranges for numeric types

and maximum number of instances for reference types, any

instance o of class C within scope k can be represented by

a vector containing a cell for each field f of each object o′

reachable from o. The domain of each cell is a range of natural

numbers, where each value uniquely identifies an object/value

within the scope, for the corresponding field. For instance,

given a scope of exactly one list object, 4 nodes, size in the

range 0..3 and value in the range 0..2 for the singly linked

list example, the top-right list of Fig. 2 is represented by the

instance vector shown in Fig. 6.

This representation implies that the maximum size consid-

ered for reference-based types has to be set beforehand, since it

determines the vector length. Therefore, we cannot in principle

use a network trained for instances of size up to k with

structures of a greater size, since the latter would be captured

with different (longer) vectors. It is worth remarking that our

object encoding mechanism is deterministic. Structures are

canonically represented by assigning identifiers to nodes by

their order in breadth-first traversal (using an arbitrary, but

fixed, order for fields). Also, floating point fields are supported

by our technique, but are disregarded when generating invalid

vectors (i.e., we never build “invalid” structures by modifying

floating point fields).

C. Building and Training the Neural Net

The vectors representing the positive and negative instances

form the training set that we feed the network with. The

network that we build in order to learn to classify these

instances as positive or negative is a feed-forward artificial
neural network. Firstly, assuming that the size of the current

vectors is n, the input layer will contain n input neurons,

each receiving a position of the vector, and the output layer

will always have 1 neuron since our classification problem

involves two different classes. Only one hidden layer is used.

The number of hidden units (i.e., number of neurons) in the

hidden layer is a hyperparameter whose value can impact the

network’s effectiveness, and can be set automatically. Known

algorithms to automatically select hyperparameters are grid
search and random search; we use random search due to

its ability to reduce the validation set error faster than grid

search [7]. The parameter for the number of hidden layer

units takes values in the range [2, 100]. Another hyperpa-

rameter that is usually considered, and we consider in our

work, is the regularization term (a penalty coefficient that

affects the neural network’s learning process); values for this

parameter were taken in the range [−5, 3], evenly spaced in

a logarithmic scale, as is customary in various domains. We

launched 10 random combinations of hyperparameter values

and then selected the combination with the best performance,

to determine the final network architecture. As we show in

the following experimental evaluation, the level of precision

that we achieved did not demand further tuning of the neural

network’s hyperparameters.

We use the Multi-layer Perceptron neural network imple-

mentation of the python scikit-learn package [31].

V. EVALUATION

The evaluation of our technique is driven by the following

research questions:

RQ1 Is the technique for building potentially invalid instances
suitable for this task?

RQ2 How precise is the neural network in classifying valid/in-
valid objects?

RQ3 Do our learned object classifiers help in capturing rel-
evant information on expected class behaviors, that can
lead to improved bug finding?

To evaluate RQ1, we need to assess every potentially invalid

instance that we build with our technique based on field

extensions, to check if it is indeed invalid. Our experiment

proceeded as follows. We took all case studies accompanying

the Korat distribution [8] (available in [2]), that involve

various data structures of varying complexities for which

class invariants are provided (notice that Korat requires class

invariants expressed as Java predicates for test input generation

[8]). We extended each class with a set of builders (e.g.,

constructor and insertion routines), and used Randoop to

produce valid instances with these builders, disregarding the

invariant provided with Korat, for different scopes. For each

case we ran Randoop with 100 different seeds, 10 seconds

each, and collected all produced objects (a total of over 16

minutes input generation time, per case study). We then used

our technique based on exploiting field extensions to produce

potentially invalid objects, and checked for their spuriousness

using the corresponding invariant in the Korat distribution. In

these experiments, the object builders were straightforward

to select (mostly constructors and insertion routines), but

selecting a sufficient and at the same time small set of builders

may be subtle.



TABLE I
NUMBER OF SPURIOUS INVALID OBJECTS GENERATED BY EXPLOITING

FIELD EXTENSIONS.

Scope Instances
Total Positive Negative False Negative

Singly Linked List
6 15731 2486 13245 0 (0%)
7 41323 7867 33456 0 (0%)
8 81199 16416 64783 0 (0%)

Singly Sorted List
6 10546 240 10306 239 (2%)
7 34779 830 33949 760 (2%)
8 85708 2577 83131 1966 (2%)

Doubly Linked List
6 48190 5155 43035 0 (0%)
7 85955 9381 76574 0 (0%)
8 136893 14801 122092 0 (0%)

Binary Tree
6 7255 193 7062 0 (0%)
7 21647 567 21080 0 (0%)
8 55953 1401 54552 0 (0%)

Binary Search Tree
6 19137 692 18445 365 (2%)
7 53006 2198 50808 840 (2%)
8 112031 5368 106663 1700 (2%)

Red Black Tree
6 8700 165 8535 131 (2%)
7 27358 464 26894 313 (1%)
8 73422 1323 72099 690 (1%)

Binomial Heap
6 3243 407 2836 70 (2%)
7 2830 380 2450 58 (2%)
8 124563 12889 111674 5213 (5%)

The results are summarized in Table I. This Table shows,

for each case study and various scopes, the total number of

produced objects, distinguishing between valid and invalid

objects, and for the latter the number of spurious cases (i.e.,

objects built by breaking objects using field extensions that

actually satisfied the corresponding original repOK provided

with Korat). Due to space reasons, we show a sample of the

structures and scopes. Further details can be found in the

experiments site [3].

To evaluate RQ2, we first performed the following exper-

iment. We again took Korat case studies with our provided

object builders, and ran, for each class C, our technique,

obtaining a corresponding object classifier I ′. In this step we

used the object builders, and disregarded the provided class

invariants. We then used for each class C its Korat invariant

I to generate all valid objects within a given scope k (i.e.,

all valid objects of size at most k), using the Korat tool [8].

Moreover, we also collected the objects that Korat produced in

the search for valid objects, that were deemed invalid (i.e., that

did not satisfy the corresponding invariant). This collection of

valid and invalid objects was used for measuring the precision

and recall in object classification, as separate measures for

valid and invalid objects. This experiment was performed

for increasingly larger scopes, as long as the number of

instances did not exceed 1 million. The results are summarized

in Table II. For each case study and scope we report: the

number of valid and invalid objects used for training, as

well as the training time (notice that each training set was

generated with Randoop and the object builders); the size of

the sample used for measuring recall/precision, provided as

total number of valid/invalid objects (notice that these were

generated using Korat); the number of objects correctly and

incorrectly classified (tp/tn for true positive/negative, fp/fn for

false positive/negative), and the corresponding precision and

recall, given as percentages. Notice that, since the training and

evaluation sets are generated independently, some structures

used in training may also appear in the evaluation set. We have

indicated between parentheses the number of new positive and

negative instances in the evaluation set, i.e., those structures

that have been used for evaluation but that were not part of the

corresponding training sets. Again, a sample of the structures

and scopes is shown; more information can be found in the

experiments site [3].

In order to have a reference of the accuracy of our approach,

we compare our learned object classifiers with invariants

generated using Daikon [13]. The process we followed to

produce invariants with Daikon is the following. For each

case study, we took the same tests used as a starting point for

learning object classifiers with our approach, and ran Daikon

using those. Daikon produced a list l of likely invariants, which

in all cases included invalid properties (properties that were

true of the provided tests but were not true in the general case

for the corresponding structure). From l, we produced a list

l′, by manually filtering invalid properties (i.e., properties that

do not hold for all structures). We measured the precision and

recall of the obtained Daikon invariants, for the same objects

used to measure precision/recall of our technique. The results

are summarized in Table III.

RQ3 is the only research question that does not demand a

provided class invariant for assessment. To evaluate it, we took

buggy implementations of data structures from the literature:

the scheduler implementation from the SIR repository

[12], an implementation of n-ary trees that is part of the

ANTLR parser generator, implementations of routines of a set

of integers, over red black trees, with seeded bugs, presented

in [42], binary search trees and binomial heaps used in the

empirical evaluation in [14] containing one real bug each, and

a fibonacci heap implementation taken from [1], containing a

real bug. For each case study, we took a set of builders (these

are provided as part of the corresponding implementations,

as opposed to the builders considered in RQ1), and generated

tests with Randoop from which we learned an object classifier

with our technique, with a relatively small scope (5 for all

cases), and produced likely invariants with Daikon, processed

as for RQ2. We then compared Randoop with invariant check-

ing disabled, and Randoop with invariant checking enabled

(@checkRep) using: (i) the learned classifier, and (ii) the

Daikon “filtered” invariant (only valid properties are kept), to

check in each case the bug finding ability. Every Randoop

execution for instance generation was run as for RQ2 (i.e.,

with a scope of 5), except for BinHeap, where we used scope

13 since a known bug is first exposed with such a scope. For

bug finding, a timeout of 10 minutes was set. The results are

summarized in Table IV. In the case of ANTLR, Randoop

is not able to catch the bug under any configuration. The



TABLE II
PRECISION AND RECALL OF CLASSIFYING TECHNIQUE ON COMPLEX DATA STRUCTURES.

Training Testing
Scope Instances Time Positive Instances Negative Instances

Positive Negative sec. total tp fp precision(%) recall(%) total tn fn precision(%) recall(%)
Data Structure: Singly Linked List

6 2486 13245 3,96 3906 (1420) 3906 5 99,8 100,0 42778 (37988) 42773 0 100,0 99,9
7 7867 33456 26,65 55987 (48120) 55897 7 99,9 99,8 725973 (714149) 725966 0 100,0 99,9
8 16416 64783 75,66 960800 (944384) 960800 1 99,9 100,0 10000000 (9982384) 9999999 0 100,0 99,9

Data Structure: Singly Sorted List
6 240 10306 24,51 252 (12) 246 5 98,0 97,6 96820 (94883) 96815 6 99,9 99,9
7 830 33949 133,02 924 (94) 873 2 99,7 94,4 1617109 (1610806) 1617109 51 99,9 100,0
8 2577 83131 453,14 3432 (855) 3142 57 98,2 91,5 10000000 (9988045) 9999943 290 99,9 99,9

Data Structure: Doubly Linked List
6 5155 43035 18,38 55987 (50832) 55987 8 99,9 100,0 465917 (458009) 465909 0 100,0 99,9
7 9381 76574 240,68 960800 (951419) 960800 8 99,9 100,0 8914750 (8901434) 8914742 0 100,0 99,9
8 14801 122092 978,39 1000000 (999262) 999999 1 99,9 99,9 10000000 (9998920) 9999999 0 100,0 99,9

Data Structure: Binary Tree
6 193 7062 12,81 197 (4) 197 0 100,0 100,0 4638 (3686) 4638 0 100,0 100,0
7 567 21080 162,47 626 (59) 524 3 99,4 83,7 17848 (15388) 17845 102 99,4 99,9
8 1401 54552 94,08 2056 (655) 2054 7 99,6 99,9 68810 (63224) 68803 2 99,9 99,9

Data Structure: Binary Search Tree
6 692 18445 99,15 731 (39) 720 1621 30,7 98,4 61219 (59369) 59598 11 99,9 97,3
7 2198 50808 437,42 2950 (752) 2395 6105 28,1 81,1 468758 (466278) 462653 555 99,8 98,6
8 5368 106663 574,27 12235 (6867) 7185 109544 6,1 58,7 3613742 (3511344) 3504198 5050 99,8 96,9

Data Structure: Red Black Tree
6 165 8535 29,31 327 (162) 231 52 81,6 70,6 25611 (25290) 25559 96 99,6 99,7
7 464 26894 118,20 911 (447) 679 267 71,7 74,5 111101 (110352) 110834 232 99,7 99,7
8 1323 72099 235,94 2489 (1166) 1709 2123 44,5 68,6 493546 (492139) 491423 699 99,8 99,5

Data Structure: Binomial Heap
6 3013 31141 242,43 7602 (4589) 6864 31 99,5 90,2 35213 (35093) 35182 738 97,9 99,9
7 7973 70053 401,46 107416 (99443) 100301 456 99,5 93,3 154372 (154235) 153916 7115 95,5 99,7
8 12889 111674 289,46 603744 (590855) 562354 34756 94,1 93,1 719450 (719261) 684694 41390 94,2 95,1

reason is that, due to the mechanism that Randoop uses for

incrementally building test cases, it cannot produce the aliasing

situation that is necessary to catch the bug (basically, adding

a node to itself as a child, a situation that the class interface

allows for, but Randoop cannot produce). However, when

manually building this scenario, the learned classifier detects

the anomaly, whereas no anomaly is detected without invariant

checking (i.e., no exception or other obvious error is observed)

nor with the filtered Daikon invariant. We marked this case as

“manual” to reflect this singularity.

All the experiments presented in this section can be re-

produced following the instructions found in the site of the

replication package of our approach [3].

A. Discussion

Let us briefly discuss the results of our evaluation. Re-

garding RQ1, our technique for producing invalid objects by

exploiting field extensions worked reasonably well. In general,

less than 5% of the presumably invalid objects were actually

valid, with an effectiveness that increased for larger scopes.

A closer look at these cases shows that most spurious invalid

cases have to do with producing changes in data fields, that

the neural network identifies as anomalous but the known

invariant allows for. That is, when a change to a structure

field is produced, it mostly leads to an invalid object. In other

words, field extensions seem to accurately summarize field

value feasibility. An issue that may affect this effectiveness is

the budget set for generating valid instances (and collecting

field extensions). The multiple Randoop runs performed with

different seeds produced sufficiently large samples of valid

structures, in our experiments, but this budget may be extended

to obtain more precise field extensions in other case studies.

Regarding RQ2, our experimental results show that the

artificial neural network produces object classifiers that closely

approximate class invariants. Indeed, the technique learns

classifiers that achieve a very high precision and recall for

negative cases, and significantly better precision/recall for

positive ones, compared with related techniques. In other

words, misclassified cases are significantly more likely to be

invalid inputs classified as valid, rather than the opposite. This

is a positive fact for bug detection, since it confirms that

classifiers tend to over-approximate class invariants (they will

produce fewer false negatives). The case studies where we had

less precision for positive cases were Binary Search Tree and

Red Black Tree. These cases classify various invalid objects as

valid. We confirmed that the reason for this observed learning

limitation in these case studies has to do with the complexity

of the invariants of these data structures regarding data objects,

more precisely sortedness; indeed, all invalid cases that were

misclassified as valid were correct from a structural point of

view, but violated sortedness. Further experimentation with

more complex network topologies (larger number of hidden

neurons) may show a better performance in these cases. Still,

accuracy of our fully automated approach is significantly better

than Daikon’s manually filtered invariants.

Regarding RQ3, let us remark that our comparison is

between our technique, that is fully automated, and a manually

filtered instance of Daikon. In particular for this research

question, the effort required to produce the filtered version

of Daikon-produced invariants is significant, since in most of

these cases we did not have reference invariants to compare to,

and thus each likely invariant had to be carefully examined to

decide whether it was valid, invalid, or valid for some cases.



For instance, for the binomial heap case study, the resulting

post-processed Daikon invariant has 31 lines, and involved

going through 26 likely invariants, difficult to reason about

(it is a quite sophisticated data structure). Our results show

that we achieve significantly better bug finding compared to

“no invariant” and “filtered” Daikon invariant analyses, since

our object classifiers catch 13 out of 17 bugs, while with no

invariant only 3 bugs are detected, and the filtered Daikon

invariant finds 6 out of 17. This is a very important result,

taking into account the effort required for the engineer to

produce the processed Daikon invariants, and the fact that our

technique is fully automated.

The 3 bugs that in the case of schedule can be found

with invariant checking disabled, throw exceptions, and thus

do not need a specification to be caught. The remaining 5 bugs

do not produce state changes, and thus cannot be caught by

invariant checking. The additional bug that we found is in fact

a bug that is not explicitly indicated in the repository. This 9th

bug was discovered in the supposedly correct version. It is a

bug in the upgrade_process_prio routine, that moves a

process to a queue of a higher priority, but it does not update

the process priority correctly. Indeed, a line in this routine that

performs the following assignment:

proc->priority = prio;

should instead be as follows:

proc->priority = prio+1;

The SIR repository includes another scheduler implemen-

tation (scheduler2). We did not include this case study in

our evaluation because all seeded bugs correspond to routines

that do not change object states, and thus cannot be caught

by just checking invariant preservation. The bugs seeded in

the red-black tree implementation from [42] all correspond to

the insert method. We trained the neural network using a

correct version of this method, and then used it to attempt to

catch the seeded bugs.

B. Threats to Validity

Our experimental evaluation is limited to data structures.

These are good representatives of data characterized by com-

plex invariants, which are beyond known invariant inference

techniques such as Daikon. From the wide domain of data

structures, we have selected a large set for which invari-

ants were provided elsewhere, for answering RQ1 and RQ2,

that required provided invariants. This benchmark includes

data structures of varying complexities, including cyclic and

acyclic topologies, balance, sortedness, etc. One may argue

that restricting the analysis to these case studies might favor

our results. While an exhaustive evaluation of classes with

complex constraints is infeasible, we consider that invariant

complexity (especially for invariants whose expression goes

beyond simple constraints such as linear comparisons) is a

crucial aspect we want our approach to target, and designed

the experiments taking this issue into account. The evaluated

structures correspond to a broad range of complexity, going

from those with simple linear structures to other with tree-

like, balanced shape. For RQ3, we did not need classes with

provided invariants. We chose to analyze buggy data structures

taken from the literature, as opposed to evaluating on our own

seeded faults, to avoid unintentional bias.

The evaluation is largely based on implementations taken

from the literature. Korat case studies had to be extended,

however, with builders. Our implementations were carefully

examined, as an attempt to make these respect the cor-

responding invariant, and to remove possible defects that

would affect our experiments. We did not formally verify

our implementations, but errors in these would have implied

invalid objects being generated as valid, thus affecting the

outcome of our whole learning approach. That is, errors in

our implementations would have derived in less precision, i.e.,

they would hinder our results rather than favour them.

VI. RELATED WORK

Many tools for automated program analysis can profit from

invariants. Some tools use invariants for run time checking,

notably the Eiffel programming language, that incorporates

contracts as part of the programming language [26], the

runtime assertion checker and static verifiers that use JML [9],

Code Contracts for .NET [5], among others. Some techniques

for automated test case generation also exploit these invariants

for run time checking, converting the corresponding techniques

into bug finding approaches. Some examples are Randoop [29]

and AutoTest [27]. Our approach learns object classifiers that

can be used in place of class invariants, but which are are black
box, i.e., are not composed of explicit constraints that can be

inspected. But since many of the above mentioned tools simply

use invariants for object checking, without any dependency on

the internal structure of the invariant, they are useful in these

contexts. However, tools like Korat and Symbolic PathFinder,

that require class invariants in the form of repOK routines to

be provided, cannot be used with our learned classifiers, since

they exploit the program structure of the invariant to drive the

search for valid inputs [8], [30].

The oracle problem has been studied by many researchers,

and techniques to tackling it in different ways, have been pro-

posed [6]. Our approach is more closely related to techniques

for oracle derivation [6], more precisely, for specification
inference. Within this category, tools that perform specification

inference from executions, like ours, include Daikon [13] and

JWalk [38]. Both these tools attempt to infer invariants from

positive executions, as opposed to our case that also includes a

mechanism to produce (potentially) invalid objects. We have

compared in this paper with Daikon, since JWalk tends to

infer properties that are more scenario-specific. The use of

artificial neural networks for inferring specifications has been

proposed before [36], [35]; these works, however, attempt

to learn postcondition relations (I/O relations) from “golden

versions” of programs, i.e., assumed correct programs. While

this approach is useful, e.g., in regression testing or differential

testing scenarios, using it in our case would mean to learn the



TABLE III
PRECISION AND RECALL OF MANUALLY FILTERED DAIKON INVARIANTS ON COMPLEX DATA STRUCTURES.

Testing
Scope Instances Positive Instances Negative Instances

Positive Negative total tp fp precision(%) recall(%) total tn fn precision(%) recall(%)
Data Structure: Singly Linked List

6 2486 13245 3906 3906 42770 8,3 100,0 42778 8 0 100,0 0,0
7 7867 33456 55987 55987 725964 7,1 100,0 725973 9 0 100,0 0,0
8 16416 64783 960800 960800 9999997 8,7 100,0 10000000 3 0 100,0 0,0

Data Structure: Singly Sorted List
6 240 10306 252 252 713 26,1 100,0 911 198 0 100,0 21,7
7 830 33949 924 924 3421 21,2 100,0 3978 557 0 100,0 14,0
8 2577 83131 3432 3432 15944 17,7 100,0 17781 1837 0 100,0 10,3

Data Structure: Doubly Linked List
6 5155 43035 55987 55987 345246 13,9 100,0 465917 120671 0 100,0 25,8
7 9381 76574 960800 960800 6862849 12,2 100,0 8914750 2051901 0 100,0 23,0
8 14801 122092 1000000 1000000 7930490 11,1 100,0 10000000 1069510 0 100,0 10,6

Data Structure: Binary Tree
6 193 7062 197 197 4634 4,0 100,0 4638 4 0 100,0 0,0
7 567 21080 626 626 17844 3,3 100,0 17848 4 0 100,0 0,0
8 1401 54552 2056 2056 68806 2,9 100,0 68810 4 0 100,0 0,0

Data Structure: Binary Search Tree
6 692 18445 731 731 40157 1,7 100,0 61219 21062 0 100,0 34,4
7 2198 50808 2950 2950 330636 0,8 100,0 468758 138122 0 100,0 29,4
8 5368 106663 12235 12235 2644744 0,4 100,0 3613742 968998 0 100,0 26,8

Data Structure: Red Black Tree
6 165 8535 327 327 4122 7,3 100,0 25611 21489 0 100,0 83,9
7 464 26894 911 911 20796 4,1 100,0 111101 90305 0 100,0 81,2
8 1323 72099 2489 2489 94296 2,5 100,0 493546 399250 0 100,0 80,8

Data Structure: Binomial Heap
6 3013 31141 7602 7602 13699 35,6 100,0 35213 21514 0 100,0 61,0
7 7973 70053 107416 107416 58791 64,6 100,0 154372 95580 0 100,0 61,9
8 12889 111674 603744 603744 297057 67,0 100,0 719450 422393 0 100,0 58,7

TABLE IV
EFFECTIVENESS OF LEARNED CLASSIFIERS IN BUG FINDING.

Case #Bugs #Found #Found # Found
Study No Inv. Obj. Class. Filt. Daikon
Antlr 1 0 (man.) 1 (man.) 0 (man.)
Scheduler 8 3 4 3
IntTreeSet 5 0 5 3
BinTree 1 0 1 0
BinHeap 1 0 1 0
FibHeap 1 0 1 0

I/O relation for a repOK, having the repOK in the first place,

a simpler problem compared to what we are tackling here.

The notion of field extension as a compact representation

of a collection of generated structures was put forward in

[33], and originates in the relational semantics of signature

fields in Alloy [17], and in the notions of upper and lower

bounds introduced with the KodKod engine [39]. Our use of

field extensions in this work, as a basis for the mechanism

for “breaking” valid objects, is different from the purpose of

bounds and partial bounds in the above cited works.

VII. CONCLUSIONS

Software specification plays a central role in various stages

of software development. In the context of program analysis,

there is an increasing availability of powerful techniques,

including test generation [29], [27], [4], bug finding [14], [24],

fault localization [43], [41] and program fixing [40], [21], [32],

for which the need for program specifications becomes crucial.

While many of these tools resort to tests as specifications,

they would in general greatly benefit from the availability of

stronger, more general specifications, such as those that class

invariants provide. Invariants are becoming more common in

program development, with methodologies that incorporate

these [25], [22], and tools that can significantly exploit them

when available for useful analyses.

We developed a technique, based on neural networks, for

inferring object classifiers to be used in place of class invari-

ants. The technique is related to other, similarly motivated,

approaches [13], [38], in the sense that it explores dynamic

software behaviours for the inference, but it also incorporates

a technique for producing invalid objects, enabling the training

of a neural network. We have analyzed the use of neural

networks for learning object classifiers, and showed that the

learning process achieves very high accuracy compared to

related approaches, that our mechanism to build supposedly

invalid objects is effective, and that the learned object classi-

fiers improve bug detection, as evidenced by experiments on

a benchmark of data structures of varying complexities.

This work opens several lines for future work. Our artificial

neural network is built with rather standard parameters; ad-

justing variables such as number of hidden layers, activation

function, etc., may be necessary, especially when scaling to

larger domains. The performance of artificial neural networks

can also be improved by feature engineering [16], a mecha-

nism we have not yet explored. Our experiments were based

on the use of random generation for producing valid objects,

the initial stage of the technique. Using alternative generation

approaches such as model checking and symbolic execution,

may lead to different, possibly more precise, results.



REFERENCES

[1] Fibonacci heap implementation from the graphmaker library.
https://github.com/nlfiedler/graphmaker. Version control
revision of the bug: https://github.com/nlfiedler/graphmaker/
commit/13d53e3c314d58cb48a6186437a36241842c98d7#
diff-1c644baf14f6ab27ffa2691c9ff02cbd. Accessed: 2018-09-02.

[2] Home page of the korat test generation tool. http://korat.sourceforge.net.
Accessed: 2017-07-01.

[3] Replication package of the object (in)validity learning approach. https:
//sites.google.com/site/learninginvariants.

[4] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Ciolek,
Marcelo F. Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato,
Nicolás Rosner, and Ignacio Vissani. Improving test generation under
rich contracts by tight bounds and incremental SAT solving. In Sixth
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2013, Luxembourg, Luxembourg, March 18-22, 2013,
pages 21–30. IEEE Computer Society, 2013.

[5] Mike Barnett. Code contracts for .net: Runtime verification and so
much more. In Howard Barringer, Yliès Falcone, Bernd Finkbeiner,
Klaus Havelund, Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg
Sokolsky, and Nikolai Tillmann, editors, Runtime Verification - First
International Conference, RV 2010, St. Julians, Malta, November 1-4,
2010. Proceedings, volume 6418 of Lecture Notes in Computer Science,
pages 16–17. Springer, 2010.

[6] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin
Yoo. The oracle problem in software testing: A survey. IEEE Trans.
Software Eng., 41(5):507–525, 2015.

[7] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13:281–305, February 2012.

[8] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:
automated testing based on java predicates. In Phyllis G. Frankl, editor,
Proceedings of the International Symposium on Software Testing and
Analysis, ISSTA 2002, Roma, Italy, July 22-24, 2002, pages 123–133.
ACM, 2002.

[9] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll.
Beyond assertions: Advanced specification and verification with JML
and esc/java2. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever, editors, Formal Methods for Components
and Objects, 4th International Symposium, FMCO 2005, Amsterdam,
The Netherlands, November 1-4, 2005, Revised Lectures, volume 4111
of Lecture Notes in Computer Science, pages 342–363. Springer, 2005.

[10] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. Dysy:
dynamic symbolic execution for invariant inference. In Wilhelm Schäfer,
Matthew B. Dwyer, and Volker Gruhn, editors, 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008, pages 281–290. ACM, 2008.

[11] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular
verification of code with SAT. In Lori L. Pollock and Mauro Pezzè,
editors, Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July
17-20, 2006, pages 109–120. ACM, 2006.

[12] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering, 10(4):405–435,
2005.

[13] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The daikon sys-
tem for dynamic detection of likely invariants. Sci. Comput. Program.,
69(1-3):35–45, 2007.

[14] Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F.
Frias. Analysis of invariants for efficient bounded verification. In Paolo
Tonella and Alessandro Orso, editors, Proceedings of the Nineteenth
International Symposium on Software Testing and Analysis, ISSTA 2010,
Trento, Italy, July 12-16, 2010, pages 25–36. ACM, 2010.

[15] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Vik-
tor Kuncak, and Darko Marinov. Test generation through programming
in UDITA. In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu,
and Sebastián Uchitel, editors, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE
2010, Cape Town, South Africa, 1-8 May 2010, pages 225–234. ACM,
2010.

[16] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research, 3:1157–1182,
2003.

[17] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

[18] Daniel Jackson, Somesh Jha, and Craig Damon. Isomorph-free model
enumeration: A new method for checking relational specifications. ACM
Trans. Program. Lang. Syst., 20(2):302–343, 1998.

[19] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov,
and Sarfraz Khurshid. Testera: A tool for testing java programs using
alloy specifications. In Perry Alexander, Corina S. Pasareanu, and
John G. Hosking, editors, 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011, pages 608–611. IEEE Computer Society, 2011.

[20] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized
symbolic execution for model checking and testing. In Hubert Garavel
and John Hatcliff, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 9th International Conference, TACAS 2003, Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings,
volume 2619 of Lecture Notes in Computer Science, pages 553–568.
Springer, 2003.

[21] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. Genprog: A generic method for automatic software repair.
IEEE Trans. Software Eng., 38(1):54–72, 2012.

[22] Barbara Liskov and John V. Guttag. Program Development in Java
- Abstraction, Specification, and Object-Oriented Design. Addison-
Wesley, 2001.

[23] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The
Basic Toolbox. Springer, 2008.

[24] Florian Merz, Stephan Falke, and Carsten Sinz. LLBMC: bounded
model checking of C and C++ programs using a compiler IR. In
Rajeev Joshi, Peter Müller, and Andreas Podelski, editors, Verified
Software: Theories, Tools, Experiments - 4th International Conference,
VSTTE 2012, Philadelphia, PA, USA, January 28-29, 2012. Proceedings,
volume 7152 of Lecture Notes in Computer Science, pages 146–161.
Springer, 2012.

[25] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[26] Bertrand Meyer. Design by contract: The eiffel method. In TOOLS
1998: 26th International Conference on Technology of Object-Oriented
Languages and Systems, 3-7 August 1998, Santa Barbara, CA, USA,
page 446. IEEE Computer Society, 1998.

[27] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa Ling Liu.
Automatic testing of object-oriented software. In Jan van Leeuwen,
Giuseppe F. Italiano, Wiebe van der Hoek, Christoph Meinel, Harald
Sack, and Frantisek Plasil, editors, SOFSEM 2007: Theory and Practice
of Computer Science, 33rd Conference on Current Trends in Theory
and Practice of Computer Science, Harrachov, Czech Republic, January
20-26, 2007, Proceedings, volume 4362 of Lecture Notes in Computer
Science, pages 114–129. Springer, 2007.

[28] Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, and Aditya V.
Thakur. The yogiproject: Software property checking via static analysis
and testing. In Stefan Kowalewski and Anna Philippou, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 15th
International Conference, TACAS 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2009, York, UK, March 22-29, 2009. Proceedings, volume 5505 of
Lecture Notes in Computer Science, pages 178–181. Springer, 2009.

[29] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-directed random test generation. In 29th International
Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 20-26, 2007, pages 75–84. IEEE Computer Society, 2007.

[30] Corina S. Pasareanu, Willem Visser, David H. Bushnell, Jaco Gelden-
huys, Peter C. Mehlitz, and Neha Rungta. Symbolic pathfinder:
integrating symbolic execution with model checking for java bytecode
analysis. Autom. Softw. Eng., 20(3):391–425, 2013.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.



[32] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. IEEE
Trans. Software Eng., 40(5):427–449, 2014.

[33] Pablo Ponzio, Nazareno Aguirre, Marcelo F. Frias, and Willem Visser.
Field-exhaustive testing. In Thomas Zimmermann, Jane Cleland-Huang,
and Zhendong Su, editors, Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, November 13-18, 2016, pages 908–919. ACM,
2016.

[34] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern
Approach (3. internat. ed.). Pearson Education, 2010.

[35] Seyed Reza Shahamiri, Wan M. N. Wan-Kadir, Suhaimi Ibrahim, and
Siti Zaiton Mohd Hashim. Artificial neural networks as multi-networks
automated test oracle. Autom. Softw. Eng., 19(3):303–334, 2012.

[36] Seyed Reza Shahamiri, Wan Mohd Nasir Wan-Kadir, Suhaimi Ibrahim,
and Siti Zaiton Mohd Hashim. An automated framework for software
test oracle. Information & Software Technology, 53(7):774–788, 2011.

[37] Rahul Sharma and Alex Aiken. From invariant checking to invariant
inference using randomized search. Formal Methods in System Design,
48(3):235–256, 2016.

[38] Anthony J. H. Simons. Jwalk: a tool for lazy, systematic testing of java
classes by design introspection and user interaction. Autom. Softw. Eng.,
14(4):369–418, 2007.

[39] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
Orna Grumberg and Michael Huth, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 13th International Conference,

TACAS 2007, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 -
April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer
Science, pages 632–647. Springer, 2007.

[40] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In
31st International Conference on Software Engineering, ICSE 2009, May
16-24, 2009, Vancouver, Canada, Proceedings, pages 364–374. IEEE,
2009.

[41] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
A survey on software fault localization. IEEE Trans. Software Eng.,
42(8):707–740, 2016.

[42] Razieh Nokhbeh Zaeem, Divya Gopinath, Sarfraz Khurshid, and
Kathryn S. McKinley. History-aware data structure repair using SAT. In
Cormac Flanagan and Barbara König, editors, Tools and Algorithms for
the Construction and Analysis of Systems - 18th International Confer-
ence, TACAS 2012, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,
March 24 - April 1, 2012. Proceedings, volume 7214 of Lecture Notes
in Computer Science, pages 2–17. Springer, 2012.

[43] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults
through automated predicate switching. In Leon J. Osterweil, H. Dieter
Rombach, and Mary Lou Soffa, editors, 28th International Conference
on Software Engineering (ICSE 2006), Shanghai, China, May 20-28,
2006, pages 272–281. ACM, 2006.


