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Abstract. Very few learning systems applied to problem solving have focused 
on learning operator definitions from the interaction with a completely 
unknown environment. In order to achieve better learning convergence, several 
agents that learn separately are allowed to interchange each learned set of 
planning operators. Learning is achieved by establishing plans, executing those 
plans in the environment, analyzing the results of the execution, and combining 
new evidence with prior evidence. Operators are generated incrementally by 
combining rote learning, induction, and a variant of reinforcement learning. The 
results show how allowing the communication among individual learning (and 
planning) agents provides a much better percentage of successful plans, plus an 
improved convergence rate than the individual agents alone. 

1   Introduction 

Given unknown environments, real autonomous systems must generate theories of 
how their environment reacts to their actions, and how the actions affect the 
environment. Usually, these learned theories are partial, incomplete and incorrect, but 
they can be used to plan, to further modify those theories, or to create new ones. 
Previous work on machine learning applied to problem solving has mainly focused on 
learning knowledge whose goal was to improve the efficiency of the problem solving 
task [Borrajo and Veloso, 1997; Laird et al., 1986; Minton, 1988; Veloso, 1994]. 
There is also a current interest in learning state transition probabilities in the context 
of reinforcement learning [Sutton, 1990; Watkins and Dayan, 1992]. However, few 
researchers have approached the generalized operators acquisition problem [Carbonell 
and Gil, 1990; Wang, 1996], described as techniques for automatically acquiring 
generalized descriptions of a domain theory. This issue is crucial when dealing with 
systems that must autonomously adapt to an unknown and dynamic environment. 

LOPE (Learning by Observation in Planning Environments) is an agent 
architecture that integrates planning, learning, and execution in a closed loop, 
showing an autonomous intelligent behavior [García-Martínez and Borrajo, 1997, 
2000]. Learning planning operators (what we will call operators, is also referred to as 
action models within the reinforcement learning community) is achieved by observing 
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the consequences of executing planned actions in the environment. In order to speed 
up the convergence, heuristic generalizations of the observations have been used. 
Also, probability distribution estimators have been introduced to handle the 
contradictions among the generated planning operators. In our previous work, we 
presented a single agent architecture. Here, we will concentrate on the multiple agents 
behavior. More concretely, we present the learning mechanism, generalizing the one 
presented in those papers, and extending it by demonstrating how knowledge may be 
shared among many agents. The results show how the learning mechanism, 
outperforms the behavior of the base planner with respect to the production of 
successful plans (plans that achieve self-proposed goals). But, more importantly, they 
also show how the interaction with other learning agents greatly improves learning 
convergence and successful behavior. Section 2 describes the general architecture of 
the LOPE agents. Section 3 defines the representation that will be used in the paper 
for situations, observations and planning operators. Section 4 presents the learning 
model and its components (high level learning algorithm and heuristic generalization 
of operators). Section 5 deals with how agents share learned knowledge. Section 6 
present the experiments and their results. Section 7 compares our approach with 
related work. Finally, section 8 draws some conclusions.  

2   General Description 

One of the main objectives of each LOPE agent is to autonomously learn operators 
(action models) that predict the effects of actions in the environment by observing the 
consequences of those actions. In order to learn those descriptions, it is able to plan 
for achieving self-proposed goals, execute the plans, find out incorrect or correct 
behavior, and learn from the interaction with the environment and other agents. Each 
agent receives perceptions from the environment, called situations, applies actions, 
and learns from its interaction with the outside world (environment and other agents). 
At the beginning, the agent perceives the initial situation, and selects a random action 
to execute in the environment. Then, it loops by executing an action, perceiving the 
resulting situation and utility of the situation (a classical reward from the 
environment, further explained in section 3), learning from observing the effect of 
applying the action in the environment, and planning for further interactions with the 
environment when the previous plan has finished its execution, or the system observes 
a mismatch between the predicted situation by the agent's operators and the situation 
it perceived from the environment. The planner will not be described in this paper. 
Basically, it does a backward chaining search from the initial situation (goal) of the 
operator with the highest utility in order to find a sequence of operators that will lead 
from the current state to that goal. If it succeeds, and the probability of its success is 
greater than a given bound, it executes the plan. If not, it selects the next highest 
utility operator and searches for a plan. This process loops until it finds a plan for any 
high utility operator. More details on how the planner works can be found in [García-
Martínez and Borrajo, 1997, 2000]. Figure 1 shows an schematic view of the 
architecture, where there can be n LOPE agents. Each of the agents receives as 
input: perceptions from the environment (situation and utilities); set of actions that it 
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can perform; and operators learned by other agents. The output of each agent is a 
sequence of actions over time (for the environment), and, regularly the set of 
operators that it learned (for the other agents). 

Fig. 1. Architecture of a group of LOPE agents 

3   Representation 

The autonomous agent type of world that we used for the experiments (robotic tasks) 
were two-dimensional grids, where each position within a grid can either contain 
obstacles, energy points, or be empty. For LOPE, as for many other systems, there is a 
difference between the world states, common to classical planning, and the 
observations it perceives. While classical planners are mainly interested in the high-
level descriptions of the states (e.g. on(A,B) in the blocks world), LOPE builds its 
operators based on the perceptions it receives from its sensors (the word sensors refer 
to the generic idea of input, so this is applicable to non robotic domains); its "states" 
are the inputs it receives from its sensory system. Any post-processing of its inputs in 
order to translate them into high-level descriptions can be done without affecting the 
overall behavior. Because of the natural limitations of the sensory system, the agents 
map different states of the environment in to a single one, so our system manages 
noisy domains and hidden states. Previous work of one of the authors developed early 
versions of the learning mechanism. The representation was based on the model 
proposed in [Fritz et al., 1989], in which an observation (also called experience unit) 
had the following structure: [Initial Situation, Action, Final Situation]; where initial 
and final situations are lists of propositions that can be either true or false. In [Fritz et 
al., 1989], observations were directly used as planning operators. In [García-Martínez 
and Borrajo, 1997, 2000], while the concept of an observation does not change, the 
representation of operators is extended, by the addition of features that allow the 
system to determine their planning/execution acceptability. The proposed planning 
operator model has the structure and meaning described in Table 1, where C, F, 
action, and U are domain-dependent and have the following meaning: C and F 
describe Initial Situation and Final Situation through a list of propositions (p-list) that 
can be preceded by the ¬ symbol, denoting negation, if a proposition does not appear 
on that list, it is assumed that its value does not matter; action: can be any of the set of 
allowed actions that each agent can perform, for instance, in a robotic domain, it 
could be "go" and "turn" and U : is a function that measures how useful the current 
situation is for the agent, and refers implicitly to the distance to the agent's goal 
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(similar concept to the reward in reinforcement learning [Watkins and Daya, 1992]). 
This function could be changed to allow different behaviors, each one depending on 
their specific goals. The parameters P and K allow the architecture to decrease the 
effect of noise in the sensors or in the environment, and hidden state problems.  

4   Learning Planning Operators 

We will first define when operators and observations are similar, equal or one 
confirms another. Then we will present the high level learning algorithm  and the 
heuristic generalization of operators. 

Given two operators O1 = [C1, A1, F1, P1, K1, U1] and O2 = [C2, A2, F2, P2, K2, U2], 
and an observation o = [Si, A, Sf], we say that: (i) two operators are similar if C1 = C2 
and A1 = A2, (ii) two operators are equal if C1 = C2, A1 = A2, and F1 = F2, (iii) 
observation is similar to the operator O1 if Si ⊆ C1 and A = A1, (iv) observation
confirms the operator O1 if Si ⊆  C1, A = A1, and Sf ⊆  F1. Here, the predicate ⊆
tests whether a list of propositions subsumes another list, and the predicate = tests 
whether a list of propositions is equal to another. 

For presenting the high level learning algorithm suppose a situation Si is 
perceived by the system, and there exists a set of operators, ϕ, such that each operator 
is of the form Oi = [C,A,F,P,K,U]. If the system applies the action A, arriving at a 
situation Sf, the learning method processes this new observation by the algorithm 
shown in Table 2. When a new observation arrives at the learning module, it checks if 
a similar operator exists. If it is similar, it checks to see if the observation confirms 
the operator. Then, it rewards all such operators and punishes similar ones. If a 
similar operator exists, but there is none that is confirmed by the observation, it 
creates a new operator, punishes similar operators to the new one, and generalizes 
those similar operators. The operators generated by the generalization procedure 
reward equal operators and punish similar ones. If it does not find a similar operator 
for the input observation, it creates a new one. Punishing operators means 
incrementing in a given quantity r the number of times that the pair (condition, action) 
of similar operators to O has been observed. As the algorithm shows, punishment not 
only occurs when observations are made, but also when new generated by the 
heuristic generalization. This is so because K really accounts for the number of times 
that similar operators have been generated or seen. Similarly, rewarding operators 
means incrementing in r the P and K of a successful operator. The parameter r usually 
is equal to one, but on Section 5 different values are used for integrating operators of 
several agents with different Ks. The terms punish and reward have been borrowed 
from the field of biological reinforcement rather than from reinforcement learning. 
The heuristic-generalization algorithm generates a set of new operators according to 
the generalization heuristics, which are incorporated into the set of planning 
operators. Since the number of operators that are created can potentially slow down 
the performance of the learning and planning modules, the system forgets operators 
with a very low quotient P/K, given enough observations have been made.  

The heuristic generalization of operators is based on the heuristics defined in 
[Hayes-Roth, 1983] and [Salzberg, 1985]. For the following discussion, suppose that 
the new observation is described by (Si, A, Sf), the domain operator is described by 
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[C, A, F, P, K, U], and the new generalized observation (m) is [Cm, Am, Fm, Um]. In 
order to apply a heuristic, there had to be a fault in using the corresponding operator 
in the observed initial and resulting situations. 

Hayes-Roth [1983] proposed the following set of heuristics for revising a faulty 
(buggy) theory: Retraction generalizes an operator predicted situation so that it is 
consistent with the new observation, if Sf ⊄  F, then m = [C, A, F', U] where F' is a
generalization of F and Sf; Exclusion restricts the conditions of the operator, so that it 
does not apply in the observed situation again, given that Si ⊆  C and Sf ⊄  F, then
m = [C', A, F, U], where C' is built by selecting a proposition that does not belong to 
C (does not matter) and change it to the negation of what appears in the observation; 
Inclusion: generalizes the operator conditions, so that it will later apply in the 
observed situation. If Sf ⊆  F and Si ⊄  C, then m = [C', A, F, U], where C' is a
generalization of C and Si. It is the equivalent to retraction, but applied to the 
conditions of the operator. 

The following Salzberg (1985) heuristics are used to correct prediction violations: 
Inusuality restricts the conditions of an operator, so that it will not longer apply to the 
observed initial situation, if Si ⊆  and Sf ⊄  F, then m = [C', A, F, U], where C' is a
specialization of C, adding all propositions not appearing in C (does not matter) by 
the negation of their value in Si, differs from Hayes-Roth exclusion, in that it adds all 
propositions to C; Conservationism: it is a meta-heuristic that selects the 
generalization heuristic (from the Salzberg ones), that proposes less modifications in 
the conditions of an operator; Simplicity: it is a generalization of the Hayes-Roth 
inclusion heuristics; Adjustment: when the P/K ratio of an operator falls below a given 
threshold, it is very unlikely that the operator will correctly predict any situation, if it 
is a generalization of a set of operators (for instance, by application of the simplicity 
heuristic), this heuristic generates other combinations of those operators that will 
increase the ratio. 

5   Learning by Sharing 

Previous work of the authors presented how the integration of this combined learning 
mechanism with planning and execution allowed the system to improve the ratio of 
successful plans (sequence of actions that lead to arrive at the locations of the energy 
points) [García-Martínez and Borrajo, 1997]. In order to improve the learning 
convergence, and to test the generality of the learned knowledge, we performed 
experiments in which the system remembers the operators learned in an example grid 
g1 when planning and learning in other configurations of the grid, g2 and g3 (obstacles 
and energy points in different places). In those experiments we showed how that prior 
knowledge provided a faster learning convergence than not using it, and the Section 6 
shows the results obtained. We decided then to experiment with the inclusion of new 
agents of the same type, learning and sharing what they learned in the same grid 
configuration, and testing how that affected the learning and planning behavior. 
Agents cannot occupy the same position in the grid, and the sensors of one agent 
consider the other agents as obstacles. Under this framework, each agent continuously 
learns, plans and executes. However, when they were close to another agent, they 
were allowed to communicate in order to interchange what they learned, operator 
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descriptions. We devised two types of knowledge sharing strategies: Complete 
sharing and Most reliable operator sharing. 

In complete sharing strategy every pair of agents integrate their respective 
theories (set of operators) using all operators in the sets. The algorithm is shown in 
Table 3. For each operator of another agent (a2), an agent (a1) looks for similar 
operators in its theory. If there is no such similar operator, then the a2's operator is 
included in the set of operators of a1. If a similar operator is found, then all 
such operators are punished with the P of a2's operators. If there is no equal 
operator, then it is included in a1's operators with the K of its similar operators in 
a1's theory.  

Table 1. General description of an operator 

Planning Operator: Oi 

Feature Description Values

C Initial Situation (conditions) p-list

A Action action

F Final Situation p-list

P Times that the operator Oi was 
succesfully applied (the expected 
final situation, F, was obtained) 

integer 

K Times that the action A was 

applied to C 

integer 

U Utility level reached applying the 

action to the initial situation, C, of 

the operator 

real 

0..1 

Table 2. Algorithm that integrates the oper-
ators of two agents 

Function Complete-sharing (ϕ1, ϕ2 ) : ϕ1 

ϕ1: Set of operator of agent 1 
ϕ2: Set of operator of agent 2 

Forall Oi ∈ϕ2 do 

If exists Oj ∈  ϕ1 such that COj = COi

AND AOj = AOi  
Then ϕ1 := punish-operators(Oj, ϕ1, POi); 

If any of the similar operators to Oi, 
Ok, is such that FOk = FOi 

Then Ok := reward-operators(Ok, 
POi) 

Else KOi := KOk; 
ϕ1 := ϕ1 U {Oi} 

Else ϕ1 := ϕ1 U {Oi}; 
Return ϕ1 

Table 3. Algorithm that modifies operators 
descriptions after having seen a new 
observation 

Function Learning (Si, A, Sf, U, ϕ ) : ϕ 

Si: Initial situation of the observation 
A: Applied action of the observation 
Sf: Observed final situation 
U: Observed utility 

ϕ: Set of operator descriptions 

If exists Oi ∈ϕ such that Si ⊆ COi AND

A = AOi Then 

If Sf ⊆  FOi Then

Forall Oi such that Si ⊆ COi

AND =AOi AND Sf ⊆ FOi do 

Oi := reward-operator(Oi, 1); 
UOi := max(UOi, U); 
ϕ := punish-operators(Oi, ϕ, 1) 

Else On := [Si, A, Sf, 1, KOi + 1, U]; 
ϕ := ϕ U {On} 
ϕ := punish-operators(On, ϕ, 1) 
M := heuristic-generalization(Si,A, Sf,ϕ); 

Forall M ∈  M do

If exists Oj∈ϕ such that COj=CM

AND AOj=AM Then  
If FOj = FM Then  

Oj := reward-operator(Oj, 1); 
ϕ := punish-operators(Oj, ϕ, 1) 

Else On := [Cm, Am, Fm, 1, KOj + 1, 
UOj]; 

ϕ := ϕ U [On]; 
ϕ := punish-operators(On, ϕ, 1) 

Else ϕ := ϕ U {[Cm, Am, Fm, 1, 1, Um]}; 
Else ϕ := ϕ U {[Si, A, Sf, 1, 1, U]} 

Return ϕ 

In  most reliable operator sharing strategy every time two agents share their 
knowledge, only the most liable operators are share (the ones that maximize the 
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quotient P/K). The only difference with the prior algorithm is that instead of 
providing it as input with ϕ2, the algorithm is called with the set of most liable 
operators. This set is computed by selecting from each set of similar operators of an 
agent, the one with maximum P/K. 

6   Experiments and Results 

We performed several experiments in previous papers to test the behavior of LOPE 
(García-Martínez and Borrajo, 1997). In order to test the effect of sharing the 
knowledge among the agents, we performed new experiments which we then 
compared with a summary of the best results of the previous ones. On each 
experiment, we averaged the results of running 50 tests. In each test, the initial setup 
(environment-grid and initial position of the agent) was randomly selected, and each 
LOPE agent performed 500 cycles of learning, planning and execution. Grids of 700 x 
100 pixels were randomly created consisting of 10-20 randomly situated energy 
points (goals) and obstacles (10% to 20% of the grid area was covered by them). In 
the multiple agents setup, the agents shared their knowledge when they were 20 pixels 
away from another. We compare here seven experiments: SG: a single LOPE agent 
learning in a single grid, in which operators are generalized; SP: a single LOPE agent 
learning in a single grid where a probability estimator is assigned to each operator. 
This estimator is the quotation P/K of each learned operator, also, it is used to assign a 
confidence to the generated plans, so that plans with low confidence are discarded. 
The decisions of the agent are based on sensory input only when there is no plan on 
execution. We have shown previously that the P/K of similar operators follows a 
multinomial distribution of probability and that is an unbiased estimator of the 
probability. Also, when an exact theory of the domain exists, the operators that have 
been built applying the learning mechanism based on observations convergence to the 
exact ones; MC: a set of LOPE agents (we used two for these experiments) learning at 
the same time in the same grid configuration with the complete sharing strategy; SGP: 
a single LOPE agent learning in a single grid, in which operators are generalized, and 
a probability estimator is assigned to each operator to assign a confidence to the 
generated plans, so that plans with low confidence are discarded; MCG: a set of 
LOPE agents learning at the same time in the same grid with the complete sharing 
strategy and in which operators are generalized; MCP: a set of LOPE agents learning 
at the same time in the same grid configuration with the complete sharing strategy, 
and where a probability estimator is assigned to each operator to assign a confidence 
to the generated plans, so that plans with low confidence are discarded; MCGP: a set 
of LOPE agents learning at the same time in the same grid with the complete sharing 
strategy, in this grid the operators are generalized, and a probability estimator is 
assigned to each operator to assign a confidence to the generated plans, so that plans 
with low confidence are discarded.  

We used the percentage of successful plans when comparing these versions of 
the system, and the results of the experiments are shown in Figure 2. First, these 
results clearly show that the combination of generalization and probability 
estimation (SGP) outperforms the system using only generalization (SG). Besides, 
using probability estimation in two agents with complete sharing (MCP) improves 
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in convergence rate with respect to the SP case, but it worse in the long run, since it 
converges to a lower percentage rate than the MCP case. It means that sharing 
knowledge among agents at the beginning is better than using only one agent. Other 
results show that the use of generalization in two agents with complete sharing 
(MCG) is worse without using generalization (MC) and even is worse when one 
agent use generalized operators (SG). 

Fig. 2. Results of the experiments 

7   Related Work 

The closest related work is the one on reinforcement learning techniques within the 
Markov Decision Processes (MDP) paradigm (Mahavedan and Connell, 1992; Sutton, 
1990; Watkins and Dayan, 1992). Also, current techniques that deal with Partially 
Observable Markov Decision Processes (POMDP) are very close to this approach 
[Kaebling et al., 1998]. Usually, they integrate reinforcement learning, planning and 
reacting based on approximated dynamic programming. It differs from our work in 
the fact that the reinforcement procedure is local to an operator, while, in our case, the 
reinforcement of an operator explicitly implies the punishment of similar ones (global 
reinforcement). The second difference refers to the fact that we use symbolically 
generalized states, instead of instantiated states (as most other work in reinforcement 
learning), or non-symbolically based generalized states (such as neural networks [Lin, 
1995]. In fact, our approach can be viewed as a method for producing a generalized Q 
table using global reinforcement. Similar approaches, group sets of similar states 
and/or actions on big state/action spaces [Boutilier et al., 1995]. Most of this work 
uses different representation schemas, such as belief networks. A third difference lies 
on the type of planning scheme for which it is used. While reinforcement learning has 
been usually applied for more reactive planning (with some exceptions), our approach 
lies closer to the classical planning approach (plans are generated in a search-based 
fashion and later monitored for divergences between predicted and observed states) 
[García-Martínez and Borrajo, 1997; 2000]. A fourth difference with most work on 
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reinforcement learning lies in the fact that we do not deal with the temporal credit 
assignment problem. Each learning episode is handled independently of what 
happened before. Within this classical reinforcement learning framework, the work by 
Tan [1993] could be considered a predecessor of our work. He explores the 
cooperation among agents by sharing instantaneous information (perceptions, actions 
or rewards), sequences of perception-action-reward, and learned policies. The 
GINKO system [Barbehenn and Hutchinson, 1991], the LIVE system [Shen, 1993], 
and the work of Safra and Tennenholtz [1994] also integrate perception, action and 
learning. They differ from the proposed architecture in the fact that they do not take 
into account reinforcement nor heuristic-based refinement of operators. Chrisitansen 
[1992] also addresses the problem of learning operators (task theories) in a robotic 
domain. However, in his work there is no revision process as our heuristic-based 
refinement process. OBSERVER [Wang, 1996] uses an incremental approach for 
operators revision, where operators involve during the execution of the system. 
However, there is no memory of past versions of the operators as in LOPE. Also, 
OBSERVER uses predicate logic for representation, since its goal is to perform 
classical high-level planning. Our approach uses a representation that is close to the 
real inputs and outputs of system, with that intermediate type of planning between 
high-level and reactive planning. Other integrated planning and learning systems for 
robotic tasks are [Bennet and DeJong, 1996] and [Klingspor et al., 1996]. The first 
one deals with the concept of permissiveness, that defines qualitative behavior for the 
operators. The second one uses Inductive Logic Programming for learning the 
operators of the domain by doing a transformation from the sensor data into predicate 
logic. They both differ from our approach in that they need some type of prior 
background knowledge, either a predefined domain theory in the form of initial 
operators, or external instruction and knowledge on how to perform the 
transformation. 

8   Conclusions 

In this paper, we have presented an architecture that learns a model of its environment 
by observing the effects of performing actions on it. The LOPE agents autonomously 
interact with their environment and with other agents with the objective of learning 
operators that predict, with a given probability estimator, the resulting situation of 
applying an action to another situation. Two types of knowledge sharing strategies 
among the agents have been presented: sharing of all the acquired knowledge 
(operators), and sharing of only the best operator of different sets of operators. The 
results show that sharing the learned knowledge can greatly help an autonomous 
system to acquire a theory description that models the environment, thus achieving a 
high percentage of successful plans, and also improving the convergence rate for 
obtaining a successful theory. An important issue when allowing sharing of operators 
among agents, is related to the differences on their sensors, which causes different 
ways of perceiving the world, and, therefore, different biases towards the generation 
of operators. We have not yet studied this effect, although one possible way of 
solving it could be by learning other agents biases, in order to perform a more 
informed sharing of knowledge. With respect to the scalability of the approach, we 
are now performing experiments in a much more complex, noisy, with hidden states, 
and multi-agent domain, such as the Robosoccer. We believe that through the use of 
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the probabilities estimations, and the heuristic generalization of operators, we will be 
able to cope with the complexity of that domain. 
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