
Learning by Knowledge Sharing in Autonomous
Intelligent Systems

Ramón García-Martínez, Daniel Borrajo, Pablo Maceri, and Paola Britos

Software and Knowledge Engineering Center, Graduate School,
Buenos Aires Institute of Technology, Argentina

Departamento de Informática, Universidad Carlos III de Madrid, Spain
Intelligent Systems Laboratory. School of Engineering,

University of Buenos Aires, Argentina
rgm@itba.edu.ar

Abstract. Very few learning systems applied to problem solving have focused
on learning operator definitions from the interaction with a completely
unknown environment. In order to achieve better learning convergence, several
agents that learn separately are allowed to interchange each learned set of
planning operators. Learning is achieved by establishing plans, executing those
plans in the environment, analyzing the results of the execution, and combining
new evidence with prior evidence. Operators are generated incrementally by
combining rote learning, induction, and a variant of reinforcement learning. The
results show how allowing the communication among individual learning (and
planning) agents provides a much better percentage of successful plans, plus an
improved convergence rate than the individual agents alone.

1 Introduction

Given unknown environments, real autonomous systems must generate theories of
how their environment reacts to their actions, and how the actions affect the
environment. Usually, these learned theories are partial, incomplete and incorrect, but
they can be used to plan, to further modify those theories, or to create new ones.
Previous work on machine learning applied to problem solving has mainly focused on
learning knowledge whose goal was to improve the efficiency of the problem solving
task [Borrajo and Veloso, 1997; Laird et al., 1986; Minton, 1988; Veloso, 1994].
There is also a current interest in learning state transition probabilities in the context
of reinforcement learning [Sutton, 1990; Watkins and Dayan, 1992]. However, few
researchers have approached the generalized operators acquisition problem [Carbonell
and Gil, 1990; Wang, 1996], described as techniques for automatically acquiring
generalized descriptions of a domain theory. This issue is crucial when dealing with
systems that must autonomously adapt to an unknown and dynamic environment.

LOPE (Learning by Observation in Planning Environments) is an agent
architecture that integrates planning, learning, and execution in a closed loop,
showing an autonomous intelligent behavior [García-Martínez and Borrajo, 1997,
2000]. Learning planning operators (what we will call operators, is also referred to as
action models within the reinforcement learning community) is achieved by observing

Learning by Knowledge Sharing in Autonomous Intelligent Systems 129

the consequences of executing planned actions in the environment. In order to speed
up the convergence, heuristic generalizations of the observations have been used.
Also, probability distribution estimators have been introduced to handle the
contradictions among the generated planning operators. In our previous work, we
presented a single agent architecture. Here, we will concentrate on the multiple agents
behavior. More concretely, we present the learning mechanism, generalizing the one
presented in those papers, and extending it by demonstrating how knowledge may be
shared among many agents. The results show how the learning mechanism,
outperforms the behavior of the base planner with respect to the production of
successful plans (plans that achieve self-proposed goals). But, more importantly, they
also show how the interaction with other learning agents greatly improves learning
convergence and successful behavior. Section 2 describes the general architecture of
the LOPE agents. Section 3 defines the representation that will be used in the paper
for situations, observations and planning operators. Section 4 presents the learning
model and its components (high level learning algorithm and heuristic generalization
of operators). Section 5 deals with how agents share learned knowledge. Section 6
present the experiments and their results. Section 7 compares our approach with
related work. Finally, section 8 draws some conclusions.

2 General Description

One of the main objectives of each LOPE agent is to autonomously learn operators
(action models) that predict the effects of actions in the environment by observing the
consequences of those actions. In order to learn those descriptions, it is able to plan
for achieving self-proposed goals, execute the plans, find out incorrect or correct
behavior, and learn from the interaction with the environment and other agents. Each
agent receives perceptions from the environment, called situations, applies actions,
and learns from its interaction with the outside world (environment and other agents).
At the beginning, the agent perceives the initial situation, and selects a random action
to execute in the environment. Then, it loops by executing an action, perceiving the
resulting situation and utility of the situation (a classical reward from the
environment, further explained in section 3), learning from observing the effect of
applying the action in the environment, and planning for further interactions with the
environment when the previous plan has finished its execution, or the system observes
a mismatch between the predicted situation by the agent's operators and the situation
it perceived from the environment. The planner will not be described in this paper.
Basically, it does a backward chaining search from the initial situation (goal) of the
operator with the highest utility in order to find a sequence of operators that will lead
from the current state to that goal. If it succeeds, and the probability of its success is
greater than a given bound, it executes the plan. If not, it selects the next highest
utility operator and searches for a plan. This process loops until it finds a plan for any
high utility operator. More details on how the planner works can be found in [García-
Martínez and Borrajo, 1997, 2000]. Figure 1 shows an schematic view of the
architecture, where there can be n LOPE agents. Each of the agents receives as
input: perceptions from the environment (situation and utilities); set of actions that it

130 R. García-Martínez et al.

can perform; and operators learned by other agents. The output of each agent is a
sequence of actions over time (for the environment), and, regularly the set of
operators that it learned (for the other agents).

Fig. 1. Architecture of a group of LOPE agents

3 Representation

The autonomous agent type of world that we used for the experiments (robotic tasks)
were two-dimensional grids, where each position within a grid can either contain
obstacles, energy points, or be empty. For LOPE, as for many other systems, there is a
difference between the world states, common to classical planning, and the
observations it perceives. While classical planners are mainly interested in the high-
level descriptions of the states (e.g. on(A,B) in the blocks world), LOPE builds its
operators based on the perceptions it receives from its sensors (the word sensors refer
to the generic idea of input, so this is applicable to non robotic domains); its "states"
are the inputs it receives from its sensory system. Any post-processing of its inputs in
order to translate them into high-level descriptions can be done without affecting the
overall behavior. Because of the natural limitations of the sensory system, the agents
map different states of the environment in to a single one, so our system manages
noisy domains and hidden states. Previous work of one of the authors developed early
versions of the learning mechanism. The representation was based on the model
proposed in [Fritz et al., 1989], in which an observation (also called experience unit)
had the following structure: [Initial Situation, Action, Final Situation]; where initial
and final situations are lists of propositions that can be either true or false. In [Fritz et
al., 1989], observations were directly used as planning operators. In [García-Martínez
and Borrajo, 1997, 2000], while the concept of an observation does not change, the
representation of operators is extended, by the addition of features that allow the
system to determine their planning/execution acceptability. The proposed planning
operator model has the structure and meaning described in Table 1, where C, F,
action, and U are domain-dependent and have the following meaning: C and F
describe Initial Situation and Final Situation through a list of propositions (p-list) that
can be preceded by the ¬ symbol, denoting negation, if a proposition does not appear
on that list, it is assumed that its value does not matter; action: can be any of the set of
allowed actions that each agent can perform, for instance, in a robotic domain, it
could be "go" and "turn" and U : is a function that measures how useful the current
situation is for the agent, and refers implicitly to the distance to the agent's goal

Learning by Knowledge Sharing in Autonomous Intelligent Systems 131

(similar concept to the reward in reinforcement learning [Watkins and Daya, 1992]).
This function could be changed to allow different behaviors, each one depending on
their specific goals. The parameters P and K allow the architecture to decrease the
effect of noise in the sensors or in the environment, and hidden state problems.

4 Learning Planning Operators

We will first define when operators and observations are similar, equal or one
confirms another. Then we will present the high level learning algorithm and the
heuristic generalization of operators.

Given two operators O1 = [C1, A1, F1, P1, K1, U1] and O2 = [C2, A2, F2, P2, K2, U2],
and an observation o = [Si, A, Sf], we say that: (i) two operators are similar if C1 = C2
and A1 = A2, (ii) two operators are equal if C1 = C2, A1 = A2, and F1 = F2, (iii)
observation is similar to the operator O1 if Si ⊆ C1 and A = A1, (iv) observation
confirms the operator O1 if Si ⊆ C1, A = A1, and Sf ⊆ F1. Here, the predicate ⊆
tests whether a list of propositions subsumes another list, and the predicate = tests
whether a list of propositions is equal to another.

For presenting the high level learning algorithm suppose a situation Si is
perceived by the system, and there exists a set of operators, ϕ, such that each operator
is of the form Oi = [C,A,F,P,K,U]. If the system applies the action A, arriving at a
situation Sf, the learning method processes this new observation by the algorithm
shown in Table 2. When a new observation arrives at the learning module, it checks if
a similar operator exists. If it is similar, it checks to see if the observation confirms
the operator. Then, it rewards all such operators and punishes similar ones. If a
similar operator exists, but there is none that is confirmed by the observation, it
creates a new operator, punishes similar operators to the new one, and generalizes
those similar operators. The operators generated by the generalization procedure
reward equal operators and punish similar ones. If it does not find a similar operator
for the input observation, it creates a new one. Punishing operators means
incrementing in a given quantity r the number of times that the pair (condition, action)
of similar operators to O has been observed. As the algorithm shows, punishment not
only occurs when observations are made, but also when new generated by the
heuristic generalization. This is so because K really accounts for the number of times
that similar operators have been generated or seen. Similarly, rewarding operators
means incrementing in r the P and K of a successful operator. The parameter r usually
is equal to one, but on Section 5 different values are used for integrating operators of
several agents with different Ks. The terms punish and reward have been borrowed
from the field of biological reinforcement rather than from reinforcement learning.
The heuristic-generalization algorithm generates a set of new operators according to
the generalization heuristics, which are incorporated into the set of planning
operators. Since the number of operators that are created can potentially slow down
the performance of the learning and planning modules, the system forgets operators
with a very low quotient P/K, given enough observations have been made.

The heuristic generalization of operators is based on the heuristics defined in
[Hayes-Roth, 1983] and [Salzberg, 1985]. For the following discussion, suppose that
the new observation is described by (Si, A, Sf), the domain operator is described by

132 R. García-Martínez et al.

[C, A, F, P, K, U], and the new generalized observation (m) is [Cm, Am, Fm, Um]. In
order to apply a heuristic, there had to be a fault in using the corresponding operator
in the observed initial and resulting situations.

Hayes-Roth [1983] proposed the following set of heuristics for revising a faulty
(buggy) theory: Retraction generalizes an operator predicted situation so that it is
consistent with the new observation, if Sf ⊄ F, then m = [C, A, F', U] where F' is a
generalization of F and Sf; Exclusion restricts the conditions of the operator, so that it
does not apply in the observed situation again, given that Si ⊆ C and Sf ⊄ F, then
m = [C', A, F, U], where C' is built by selecting a proposition that does not belong to
C (does not matter) and change it to the negation of what appears in the observation;
Inclusion: generalizes the operator conditions, so that it will later apply in the
observed situation. If Sf ⊆ F and Si ⊄ C, then m = [C', A, F, U], where C' is a
generalization of C and Si. It is the equivalent to retraction, but applied to the
conditions of the operator.

The following Salzberg (1985) heuristics are used to correct prediction violations:
Inusuality restricts the conditions of an operator, so that it will not longer apply to the
observed initial situation, if Si ⊆ and Sf ⊄ F, then m = [C', A, F, U], where C' is a
specialization of C, adding all propositions not appearing in C (does not matter) by
the negation of their value in Si, differs from Hayes-Roth exclusion, in that it adds all
propositions to C; Conservationism: it is a meta-heuristic that selects the
generalization heuristic (from the Salzberg ones), that proposes less modifications in
the conditions of an operator; Simplicity: it is a generalization of the Hayes-Roth
inclusion heuristics; Adjustment: when the P/K ratio of an operator falls below a given
threshold, it is very unlikely that the operator will correctly predict any situation, if it
is a generalization of a set of operators (for instance, by application of the simplicity
heuristic), this heuristic generates other combinations of those operators that will
increase the ratio.

5 Learning by Sharing

Previous work of the authors presented how the integration of this combined learning
mechanism with planning and execution allowed the system to improve the ratio of
successful plans (sequence of actions that lead to arrive at the locations of the energy
points) [García-Martínez and Borrajo, 1997]. In order to improve the learning
convergence, and to test the generality of the learned knowledge, we performed
experiments in which the system remembers the operators learned in an example grid
g1 when planning and learning in other configurations of the grid, g2 and g3 (obstacles
and energy points in different places). In those experiments we showed how that prior
knowledge provided a faster learning convergence than not using it, and the Section 6
shows the results obtained. We decided then to experiment with the inclusion of new
agents of the same type, learning and sharing what they learned in the same grid
configuration, and testing how that affected the learning and planning behavior.
Agents cannot occupy the same position in the grid, and the sensors of one agent
consider the other agents as obstacles. Under this framework, each agent continuously
learns, plans and executes. However, when they were close to another agent, they
were allowed to communicate in order to interchange what they learned, operator

Learning by Knowledge Sharing in Autonomous Intelligent Systems 133

descriptions. We devised two types of knowledge sharing strategies: Complete
sharing and Most reliable operator sharing.

In complete sharing strategy every pair of agents integrate their respective
theories (set of operators) using all operators in the sets. The algorithm is shown in
Table 3. For each operator of another agent (a2), an agent (a1) looks for similar
operators in its theory. If there is no such similar operator, then the a2's operator is
included in the set of operators of a1. If a similar operator is found, then all
such operators are punished with the P of a2's operators. If there is no equal
operator, then it is included in a1's operators with the K of its similar operators in
a1's theory.

Table 1. General description of an operator

Planning Operator: Oi

Feature Description Values

C Initial Situation (conditions) p-list

A Action action

F Final Situation p-list

P Times that the operator Oi was
succesfully applied (the expected
final situation, F, was obtained)

integer

K Times that the action A was

applied to C

integer

U Utility level reached applying the

action to the initial situation, C, of

the operator

real

0..1

Table 2. Algorithm that integrates the oper-
ators of two agents

Function Complete-sharing (ϕ1, ϕ2) : ϕ1

ϕ1: Set of operator of agent 1
ϕ2: Set of operator of agent 2

Forall Oi ∈ϕ2 do

If exists Oj ∈ ϕ1 such that COj = COi

AND AOj = AOi
Then ϕ1 := punish-operators(Oj, ϕ1, POi);

If any of the similar operators to Oi,
Ok, is such that FOk = FOi

Then Ok := reward-operators(Ok,
POi)

Else KOi := KOk;
ϕ1 := ϕ1 U {Oi}

Else ϕ1 := ϕ1 U {Oi};
Return ϕ1

Table 3. Algorithm that modifies operators
descriptions after having seen a new
observation

Function Learning (Si, A, Sf, U, ϕ) : ϕ

Si: Initial situation of the observation
A: Applied action of the observation
Sf: Observed final situation
U: Observed utility

ϕ: Set of operator descriptions

If exists Oi ∈ϕ such that Si ⊆ COi AND

A = AOi Then

If Sf ⊆ FOi Then

Forall Oi such that Si ⊆ COi

AND =AOi AND Sf ⊆ FOi do

Oi := reward-operator(Oi, 1);
UOi := max(UOi, U);
ϕ := punish-operators(Oi, ϕ, 1)

Else On := [Si, A, Sf, 1, KOi + 1, U];
ϕ := ϕ U {On}
ϕ := punish-operators(On, ϕ, 1)
M := heuristic-generalization(Si,A, Sf,ϕ);

Forall M ∈ M do

If exists Oj∈ϕ such that COj=CM

AND AOj=AM Then
If FOj = FM Then

Oj := reward-operator(Oj, 1);
ϕ := punish-operators(Oj, ϕ, 1)

Else On := [Cm, Am, Fm, 1, KOj + 1,
UOj];

ϕ := ϕ U [On];
ϕ := punish-operators(On, ϕ, 1)

Else ϕ := ϕ U {[Cm, Am, Fm, 1, 1, Um]};
Else ϕ := ϕ U {[Si, A, Sf, 1, 1, U]}

Return ϕ

In most reliable operator sharing strategy every time two agents share their
knowledge, only the most liable operators are share (the ones that maximize the

134 R. García-Martínez et al.

quotient P/K). The only difference with the prior algorithm is that instead of
providing it as input with ϕ2, the algorithm is called with the set of most liable
operators. This set is computed by selecting from each set of similar operators of an
agent, the one with maximum P/K.

6 Experiments and Results

We performed several experiments in previous papers to test the behavior of LOPE
(García-Martínez and Borrajo, 1997). In order to test the effect of sharing the
knowledge among the agents, we performed new experiments which we then
compared with a summary of the best results of the previous ones. On each
experiment, we averaged the results of running 50 tests. In each test, the initial setup
(environment-grid and initial position of the agent) was randomly selected, and each
LOPE agent performed 500 cycles of learning, planning and execution. Grids of 700 x
100 pixels were randomly created consisting of 10-20 randomly situated energy
points (goals) and obstacles (10% to 20% of the grid area was covered by them). In
the multiple agents setup, the agents shared their knowledge when they were 20 pixels
away from another. We compare here seven experiments: SG: a single LOPE agent
learning in a single grid, in which operators are generalized; SP: a single LOPE agent
learning in a single grid where a probability estimator is assigned to each operator.
This estimator is the quotation P/K of each learned operator, also, it is used to assign a
confidence to the generated plans, so that plans with low confidence are discarded.
The decisions of the agent are based on sensory input only when there is no plan on
execution. We have shown previously that the P/K of similar operators follows a
multinomial distribution of probability and that is an unbiased estimator of the
probability. Also, when an exact theory of the domain exists, the operators that have
been built applying the learning mechanism based on observations convergence to the
exact ones; MC: a set of LOPE agents (we used two for these experiments) learning at
the same time in the same grid configuration with the complete sharing strategy; SGP:
a single LOPE agent learning in a single grid, in which operators are generalized, and
a probability estimator is assigned to each operator to assign a confidence to the
generated plans, so that plans with low confidence are discarded; MCG: a set of
LOPE agents learning at the same time in the same grid with the complete sharing
strategy and in which operators are generalized; MCP: a set of LOPE agents learning
at the same time in the same grid configuration with the complete sharing strategy,
and where a probability estimator is assigned to each operator to assign a confidence
to the generated plans, so that plans with low confidence are discarded; MCGP: a set
of LOPE agents learning at the same time in the same grid with the complete sharing
strategy, in this grid the operators are generalized, and a probability estimator is
assigned to each operator to assign a confidence to the generated plans, so that plans
with low confidence are discarded.

We used the percentage of successful plans when comparing these versions of
the system, and the results of the experiments are shown in Figure 2. First, these
results clearly show that the combination of generalization and probability
estimation (SGP) outperforms the system using only generalization (SG). Besides,
using probability estimation in two agents with complete sharing (MCP) improves

Learning by Knowledge Sharing in Autonomous Intelligent Systems 135

in convergence rate with respect to the SP case, but it worse in the long run, since it
converges to a lower percentage rate than the MCP case. It means that sharing
knowledge among agents at the beginning is better than using only one agent. Other
results show that the use of generalization in two agents with complete sharing
(MCG) is worse without using generalization (MC) and even is worse when one
agent use generalized operators (SG).

Fig. 2. Results of the experiments

7 Related Work

The closest related work is the one on reinforcement learning techniques within the
Markov Decision Processes (MDP) paradigm (Mahavedan and Connell, 1992; Sutton,
1990; Watkins and Dayan, 1992). Also, current techniques that deal with Partially
Observable Markov Decision Processes (POMDP) are very close to this approach
[Kaebling et al., 1998]. Usually, they integrate reinforcement learning, planning and
reacting based on approximated dynamic programming. It differs from our work in
the fact that the reinforcement procedure is local to an operator, while, in our case, the
reinforcement of an operator explicitly implies the punishment of similar ones (global
reinforcement). The second difference refers to the fact that we use symbolically
generalized states, instead of instantiated states (as most other work in reinforcement
learning), or non-symbolically based generalized states (such as neural networks [Lin,
1995]. In fact, our approach can be viewed as a method for producing a generalized Q
table using global reinforcement. Similar approaches, group sets of similar states
and/or actions on big state/action spaces [Boutilier et al., 1995]. Most of this work
uses different representation schemas, such as belief networks. A third difference lies
on the type of planning scheme for which it is used. While reinforcement learning has
been usually applied for more reactive planning (with some exceptions), our approach
lies closer to the classical planning approach (plans are generated in a search-based
fashion and later monitored for divergences between predicted and observed states)
[García-Martínez and Borrajo, 1997; 2000]. A fourth difference with most work on

136 R. García-Martínez et al.

reinforcement learning lies in the fact that we do not deal with the temporal credit
assignment problem. Each learning episode is handled independently of what
happened before. Within this classical reinforcement learning framework, the work by
Tan [1993] could be considered a predecessor of our work. He explores the
cooperation among agents by sharing instantaneous information (perceptions, actions
or rewards), sequences of perception-action-reward, and learned policies. The
GINKO system [Barbehenn and Hutchinson, 1991], the LIVE system [Shen, 1993],
and the work of Safra and Tennenholtz [1994] also integrate perception, action and
learning. They differ from the proposed architecture in the fact that they do not take
into account reinforcement nor heuristic-based refinement of operators. Chrisitansen
[1992] also addresses the problem of learning operators (task theories) in a robotic
domain. However, in his work there is no revision process as our heuristic-based
refinement process. OBSERVER [Wang, 1996] uses an incremental approach for
operators revision, where operators involve during the execution of the system.
However, there is no memory of past versions of the operators as in LOPE. Also,
OBSERVER uses predicate logic for representation, since its goal is to perform
classical high-level planning. Our approach uses a representation that is close to the
real inputs and outputs of system, with that intermediate type of planning between
high-level and reactive planning. Other integrated planning and learning systems for
robotic tasks are [Bennet and DeJong, 1996] and [Klingspor et al., 1996]. The first
one deals with the concept of permissiveness, that defines qualitative behavior for the
operators. The second one uses Inductive Logic Programming for learning the
operators of the domain by doing a transformation from the sensor data into predicate
logic. They both differ from our approach in that they need some type of prior
background knowledge, either a predefined domain theory in the form of initial
operators, or external instruction and knowledge on how to perform the
transformation.

8 Conclusions

In this paper, we have presented an architecture that learns a model of its environment
by observing the effects of performing actions on it. The LOPE agents autonomously
interact with their environment and with other agents with the objective of learning
operators that predict, with a given probability estimator, the resulting situation of
applying an action to another situation. Two types of knowledge sharing strategies
among the agents have been presented: sharing of all the acquired knowledge
(operators), and sharing of only the best operator of different sets of operators. The
results show that sharing the learned knowledge can greatly help an autonomous
system to acquire a theory description that models the environment, thus achieving a
high percentage of successful plans, and also improving the convergence rate for
obtaining a successful theory. An important issue when allowing sharing of operators
among agents, is related to the differences on their sensors, which causes different
ways of perceiving the world, and, therefore, different biases towards the generation
of operators. We have not yet studied this effect, although one possible way of
solving it could be by learning other agents biases, in order to perform a more
informed sharing of knowledge. With respect to the scalability of the approach, we
are now performing experiments in a much more complex, noisy, with hidden states,
and multi-agent domain, such as the Robosoccer. We believe that through the use of

Learning by Knowledge Sharing in Autonomous Intelligent Systems 137

the probabilities estimations, and the heuristic generalization of operators, we will be
able to cope with the complexity of that domain.

References

Barbehenn, M. and Hutchinson, S. (1991). An integrated architecture for learning and planning
in robotic domains. Sigart Butlletin, 2(4), 29-33.

Bennet, S. W. and DeJong, G. (1996). Real world robotics: Learning to plan for a robust
execution. Machine Learning, 23, 121-162.

Borrajo, D. and Veloso, M. (1997). Lazy incremental learning of control knowledge for
efficiently obtaining quality plans. AI Review Journal, 11, 371-405.

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure in policy
construction. Proc. 14th Int. Joint Conf. on AI: 1104-1111, Morgan Kaufmann.

Carbonell, J. G. and Gil, Y. (1990). Learning by experimentation: The operator refinement
method. In (Michalski and Kodratoff, eds) Machine Learning: An AI Approach, Vol. III (pp.
191-213). San Francisco: Morgan Kaufmann.

Christiansen, A. (1992). Automatic Acquisition of Task Theories for Robotic Manipulation.
PhD thesis, School of Computes Science, Carnegie Mellon University.

Fritz, W., García-Martínez, R., Blanqué, J., Rama, A., Adobbati, R., and Sarno, M. (1989). The
autonomous intelligent system. Robotics and Autonomous Systems, 5, 109-125.

García-Martínez, R. and Borrajo, D. (1997). Planning, learning, and executing in autonomous
systems. Lecture Notes in Artificial Intelligence, 1348, 208-220.

García Martínez, R. y Borrajo, D. (2000). An Integrated Approach of Learning, Planning and
Executing. Journal of Intelligent and Robotic Systems, 29, 47-78.

Hayes-Roth, F. (1983). Using proofs and refutations to learn from experience. In (Michalski,
Carbonell, and Mitchell eds) Machine Learning, An AI Approach (pp. 221-240). Palo Alto:
Tioga Press.

Kaebling, L., Littman, M. and Cassandra, A. (1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 10, 99-134.

Klingspor, V., Morik, K., and Rieger, A. (1996). Learning concepts from sensor data of a
mobile robot. Machine Learning, 23, 305-332.

Lin, L. (1995). Reinforcement Learning of Non-Markov Decision Processes. Artificial
Intelligence, 73, 271-306.

Mahavedan, S. and Connell, J. (1992). Automatic programming of behavior-based robots using
reinforce-ment learning. Artificial Intelligence, 55, 311-365.

Safra, S. and Tennenholtz, M. (1994). On planning while learning. JAIR, 2, 111-129.
Salzberg, S. (1985). Heuristics for inductive learning. Proc. 9th International Joint Conference

on AI, pages 603-609, Los Angeles, CA.
Shen, W. (1993). Discovery as autonomous learning from environment. Machine Learning, 12,

143-165.
Sutton, R. (1990). Integrated architectures for learning, planning, and reacting based on

approximating dynamic programming. Proc. 7th Int. Conf. on ML: 216-224. Kaufmann.
Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. Proc.

10th International Conference on ML (pp. 330-337), Amherst: Morgan Kaufman.
Wang, X. (1996). Planning while learning operators. PhD thesis, School of Computes Science,

Carnegie Mellon University.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

