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This work considers the problem of automatically controlling the glucose level in insulin dependent diabetes mellitus (IDDM)
patients. The objective is to include several important and practical issues in the design: model uncertainty, time variations,
nonlinearities, measurement noise, actuator delay and saturation, and real time implementation. These are fundamental issues
to be solved in a device implementing this control. Two time-varying control procedures have been proposed which take into
consideration all of them: linear parameter varying (LPV) and unfalsified control (UC). The controllers are implemented with
low-order dynamics that adapt continuously according to the glucose levels measured in real time in one case (LPV) and by
controller switching based on the actual performance in the other case (UC). Both controllers have performed adequately under

all these practical restrictions, and a discussion on pros and cons of each method is presented at the end.

1. Introduction

Under normal conditions, blood glucose concentration
should be in the interval of 60, 120 mg/dL [1]. The body reg-
ulates this concentration by means of glucagon and insulin,
both pancreatic endocrine hormones secreted from « and f3
cells, respectively. The absence of insulin released by the pan-
creas is called insulin dependent diabetes mellitus (IDDM)
and produces a higher glucose level in the blood (hypergly-
caemia). The consequences of this fact can be atherosclerosis,
retinopathy, and so forth. The excess of insulin on the other
hand, may produce a lower value of glucose (hypoglycaemia)
which may produce diabetic coma or even death. Meals and
exercise tend, respectively, to increase and decrease blood
glucose levels. It is very important to maintain glucose levels
between the previously mentioned bounds. Therefore, dia-
betic patients need external injections of insulin according to
their actual conditions in order to regulate their glucose level.
This is particularly painful in children with IDDM which
may need several insulin shots a day, plus regular glucose

measurements which may involve finger picks. Instead, type
IT diabetes is generally produced in the long term and has to
do with patient’s aging, which may not even need external
insulin provision.

Glucose-insulin dynamics has been extensively studied.
A few models based upon ordinary differential equations
(ODE) can be used, for simulation or control system design
purposes [2]. As controller design is concerned, solutions are
frequently based upon either Bergman’s 3rd. order model
[2, 3], or Sorensen’s 19th order model [4]. Both models are
nonlinear and suitable for design purposes.

The control system design for this process has been ap-
proached in different ways using both models (see [5-7] for a
survey). Solutions go from simplified PID control to heuris-
tic fuzzy-logic procedures or parametric-programming [8].
The aforementioned models, present significant sources of
uncertainty that are worth considering systematically. Re-
cently [9, 10], robust control theory has been applied to this
problem, accounting for uncertainty as linear time invariant
(LTT). An LPV model has been derived in [11] based on



Sorensen’s model and again an #. LTI controller has been
designed for it in [12, 13]. In addition, due to the nature
of the dynamics in both standard models, nonlinear control
design methods have also been applied [3, 12] but with no
clear robustness guarantees. In previous work by the authors
of this paper [14], an LPV controller design was presented
for this problem. As a preliminary conclusion, based on the
previous attempts to control this system, attention should be
paid to the following issues:

(i) model uncertainty,
(ii) time-varying and/or nonlinear phenomena,
(iii) time delays, actuator saturation, measurement noise,

(iv) real time implementation.

There have been no previous attempts to consider all these
restrictions in the controller design phase. This is particularly
important if the final objective is to construct a device to con-
trol IDDM automatically. To this end, as mentioned in [6, 9],
such a device needs the following items:

(i) an in vivo sensor for continuous blood glucose meas-
urements; preferably noninvasive,

(ii) a control algorithm for computing the necessary in-
sulin delivery concentration or the insulin delivery
rate concentration,

(iii) a physical device, for example an electromechanical
pump, to deliver the insulin calculated by the above-
mentioned algorithm.

The scientific community is already working towards ac-
curate noninvasive glucose sensors (see [15-17]) and insulin
pumps for this control system (see [18]). Noninvasive [16,
17] and semi-invasive methods, which work subcutaneously
[19], are specially important. Therefore, both sensors and
actuators are available and control algorithms may be imple-
mented in real time applications.

The objective of this work is to test two time-varying al-
gorithm design procedures to control glucose-insulin levels
in IDDM, which contemplate all these practical issues: linear
parameter varying (LPV) and unfalsified control (UC). This
is a first step towards the construction of a practical device
which may be applied effectively to patients.

This paper is organized as follows. Some brief back-
ground material on both techniques is presented in Section 2.
Section 3 is devoted to transform the simplified Bergman’s
model into a quasi-LPV model in order to design both con-
trollers. Structured model uncertainty considerations will
also be taken into account in both design methods. Simu-
lations illustrating the system’s performance are presented in
Section 4. Some technological issues which could complicate
the implementation of such a controller are detailed at the
end of that section. Final conclusions as well as future re-
search ideas end this paper in Section 5.

2. Background

The LPV method applied in this work can be broadly consid-
ered within the area of gain-scheduled control. This technique
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is frequently applied to nonlinear problems. Knowledge of
the plant’s operating condition is used to adjust the gains of
a linear controller, as the operating condition changes. This
is typically used in aircraft control, where LTI controllers
are switched for different operating points according to the
real time measurement of altitude, angle of attack and speed.
LPV controllers have improved characteristics with respect
to previous gain-scheduled ones due to their time-varying
dynamics, rather than LTI. They also provide theoretical
guarantees of performance and stability, through the smooth
real time adaptation of the controller to the operating
condition.

Instead, UC does not fall into the category of gain-sched-
uled control because it does not use a scheduling parame-
ter. Nevertheless there is also a change between controllers
through switching, which indicates its time-varying nature.
These switching events depend on the falsification of con-
trollers by means of the real time measurement of the input-
output signals of the system, which are contrasted using a
performance figure. The controller is falsified whenever the
performance objective cannot be met. The fact that there is
no need to measure a system parameter in real time has a
clear advantage over LPV control. In a sense, the operating
point is here directly determined from the input/output data
of the system.

2.1. LPV Controllers. Linear parameter varying control
methods received considerable attention since the mid 90s.
The work in [20-22] set up a basis of methods for the analysis
of LPV systems and the synthesis of LPV controllers. More
recently, full block multiplier (FBM) methods allowed a wid-
er application of this methodology [23]. These models rep-
resent a large class of dynamical systems with a special struc-
ture, allowing for a systematic approach for controller design.
In addition, but at the cost of conservatism the approach can
be applied to an even wider range of systems known as quasi-
LPV systems. An LPV system is essentially a family of linear
time-varying systems which are described by the standard
state space equations, but where the matrices (A, B, C, D) are
functions of a time-varying parameter vector p(t), measured
in real time and contained within a compact set  C R?

x(t) = Alp(t)]x(t) + B[p(t) Ju(t),
y(t) = Clp(t)]x(t) + D[p(£)]u(t).

A number of qualities make LPV methods appealing from
the practical viewpoint.

(1)

(i) A large number of practical (nonlinear) systems can
be cast properly in the LPV framework [24]. An LPV
model can be interpreted as a linear tangent model
that moves along the nonlinear system according to
its working point. If this working point can be mea-
sured in real time by means of a certain parameter, a
very practical representation of a nonlinear system is
obtained.

(ii) An LPV controller is a very convenient way of repre-
senting a systematic gain-scheduling control scheme.
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FIGURE 1: LPV controller implementation, where G is the plasma-
glucose concentration above the basal value G, input u is
the insulin infusion rate and p is the time-varying measurable
parameter, in this case p = G.

The matrices of the linear state space representation
of the controller change according to a time-varying
parameter p(t) which can be measured in real time,
that is, K[p(t)] (see Figure1). The complexity of
this controller is equivalent to the augmented model
by which it has been designed, that is, order of the
model plus performance and robustness weights. It
is implemented in real time as a controller which is
updated by real time measurements. This is faster
than classical adaptive control which is dominated by
its identification phase.

(iii) These results come originally from robust control
theory [25-27]. Hence, model uncertainty may fit
naturally in the framework and, in fact the applica-
tion of LPV techniques to practical problems can be
seen as an extension of # control for a class of time-
varying systems.

(iv) Stability and performance analysis and controller
synthesis for these systems can be formulated as
linear matrix inequalities (LMIs), see [28, 29]. LMIs
pose convex problems and can be efficiently solved by
numerical software packages [30-32].

Therefore, this is an analysis and controller design proce-
dure that can cope with nonlinear and uncertain dynamical
problems and that may be solved offline by efficient convex
optimization algorithms. In addition controllers can be
efficiently implemented in real time. Recent work has been
carried out based on these models, oriented towards fault
detection [33] and modelling [11]. In [12, 13] an H«
controller was designed based on a transformation of the
Sorensen model into an affine-LPV model [11]. Finally, a
previous work by the authors produced an LPV controller
for this problem in [14], based on Bergman’s model.

2.2. Unfalsified Controllers. The Unfalsified Control (UC)
concept [34-36] is based on Popper’s [37] theory of the
knowable: “The Scientist ... can never know for certain
whether his theory is true, although he may sometimes establish

. a theory is false.” Therefore, the concept of discovery
in science as a process of elimination of hypotheses which
are falsified by experimental evidence may be applied to the
development of a theory for implementing good controllers
from experimental data without reliance on prejudicial

assumptions about the plant, sensors, uncertainties, or noises
[35]. Since the initial concept was presented, the following
applications can be mentioned among others: PID [38],
Fault-Tolerant control [39], and robotics [40].

The theory is based on the following sets:
(Signals) § = R x U X Y,
(Systems) P = {(r,u,y) € 8 | y = Pu},
(Data) Maaa = {(1t, ) € U X Y} embedded in
Paa = {(r,1,y) € 8| () € Maaa} C P,

(Specifications) Tpec C 4,

(Controllers) K = {(r, u,y) €8 lu= K[r:| ]»
y
(2)

Here, (1, y) are the input and output of the plant and r is the
closed loop reference signal.

The main technical definition involving these sets is as
follows.

Definition 1. The controller K € K is falsified by the
experimental information if this is sufficient to deduce that
(ryu, y) € Topee for all r € R would be invalidated when K is
in the loop. Otherwise, K is unfalsified.

Therefore, several LTI controllers may be designed by
any procedure available, not even having to be based on a
particular model. This is the main advantage of UC, a model-
free procedure which is purely based on real time input-
output information and a falsification test with no prejudice
concerning its mathematical model. Nevertheless from a
practical viewpoint, as a starting point the set of controllers
may be focused on different operating points of the nonlinear
model. The falsifier selects online which is the most adequate
one to use, according to the best performance at disposal.
Therefore, this reduces to a performance-scheduled switched
controller methodology.

The implementation of these controllers is based on the
following result.

Theorem 1. Controller K € K is unfalsified by experimental
data Pga, if and only if for each triad (ro, ug, o) € K N Pata
there exists at least a pair (uy, y1) such that (ro,u;, y1) € K N
Piata N Tspec for example, ro = yo+K g = y1+K 1uy = - - -

According to this result, controller K € X is unfalsified
by the experiments if and only if K N Pgan € Tipec
(complete information case). The control scheme is depicted
in Figure 2.

It is important to highlight several outstanding charac-
teristics of this method.

(i) No linearity, time-invariance or finite dimension is
assumed on the plant model, and neither on the noise
or perturbations. All conclusions are based solely on
the actual real time information with no a priori
assumptions.
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FIGURE 2: Unfalsified controller implementation. The reference signal is in (8), the disturbance and band-limited measurement noise are
described in Section 4, a 30 min. delay and actuator saturation (100 mU/min) have also been added. G and u have been defined in Figure 1

and the index (i = 1,...,5) indicates the controller to be used.

(ii) The real time data can be taken from open or closed
loop. No extra system parameter needs to be meas-
ured in real time, as in the case of LPV control.

(iii) The only objective to seek is the best possible per-
formance, which is measured by the cost function
Tspec-

(iv) A controller can be tested (falsified) even if it is not
physically inserted in the loop, as a way not to perturb
the closed loop system.

As an example we may consider the following (invertible)
controller u = K * (r — y), that is, proper and minimum
phase, where * is the convolution operator. The specifi-

cation function is defined as Tgpee = w1 * (r — y)ll,p +
lwa * ullar — lirllar < 0 (usually the 2-norm || - ||, stands
for the signal energy, integrated in [0, o), but here || - [l2r

is integrated in the interval [0,T] to allow a real time
test.), with impulse response (w;,w,) which weight the
tracking error and control signal, respectively. The plant
input/output experimental data is Mgaa = (40, ¥0) C Pdata C
P. The fictitious reference signal ¥ = K™! % uy + yo is
computed in real time, which should be in the loop when
controller K is in place, hence K can be tested without
actually inserting it in the closed loop system. If Typee =

Ilwr * (7= yo)ll,7 + llwz * ugllar — IF1l27 > 0 this controller
is falsified.

3. Uncertain Mathematical Model

Bergman’s model will be used here to illustrate both method-
ologies as a way to control the insulin-glucose dynamics tak-
ing into account both the nonlinear and time-varying nature

TaBLE 1: Model parameters.

Py P, Ps Vi Gy I n
0 0.025 0.000013 12 81 15 0.09

of the problem as well as the inherent model uncertainty.
This model is as follows:

G(t) = =PiG(1) = X()[G(1) + Gy +d(b), 3)

X(t) = =P, X(t) + P51(2), (4)

1) = —nlI(H) + ] + —u(t), (5)
Vi

where G is the plasma-glucose concentration above the basal
value G, in mg/dL, I is the plasma-insulin concentration
above the basal value I, in mU/L, and X is proportional
to the plasma-insulin concentration in the remote compart-
ment (1/min). The disturbance d = Fg/V; is the meal
glucose perturbation in mg/mL/min, where Fg is the rate
of exogenously infused glucose in mg/min, and Vg is the
glucose distribution space in dL. V; is the insulin distribution
volume in L, and # is the fractional disappearance rate of
insulin (1/min). The parameters considered here are shown
in Table 1.

This can be considered as a quasi-LPV model by defining
variable p(¢) = G(t) in (3) as a real time measured parameter,
due to the fact that it is also the output of the system. In
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addition, the input has been redefined as v(t) = (1/Vy)u(t) —
nly, for simplicity. Therefore, the system is:

P, —(p+Gy) 0 d(t)
()= 0 -P Ps [x()+| O |,
0 0 —n v(t) (6)

() =[1 0 0]x(t),

where the state vector is x(t) = [G X I]". The last vector
of the state equation can be interpreted as a disturbance
in the first element and the control variable in the last
component. The state-space structure appears as a sort of
canonical representation. Note that this model has the same
LPV structure as in (1), where the parameter p(t) is the
plasma-glucose (time-varying) level which may be measured
in real time.

In order to evaluate robustness against model uncer-
tainty, 40% simultaneous variations in all three parameters
(P2, P3,n) have been considered, according to the inter-
patient and intra-patient variations mentioned in [8]. These
parameters appear in the first stage of this model which is
LTI, and therefore can be evaluated by robustness margins as
the structured singular value [25-27]. By transforming the
transfer function between v(t) — X(t) using the Laplace
transform and introducing parametric uncertainty variables
(81> 02, 83) and the weights (w,,, w», w3), we obtain:

1 P
C(s+n) (s+Py)
1

(7)

T )1+ w0,/ (s+ 1))

« (P30 + w363) Y
(s +Pro) (1 +w2805/(s + Pyo))

where the nominal values have index o and all uncertainties
are in the unitary intervals 6; € [-1,1], i = n,2,3. This
uncertainty structure will be evaluated to test both the
stability and performance robustness of the design.

4. Designs and Simulations

The example which tests both controllers has been taken
from [9]. There, a normal response is averaged over a group
of patients that have been subject to a disturbance of 100 g
of glucose at time t = 0. Therefore, the following is taken as
a reference model which needs to be followed by the closed-
loop control system.

2
Kuw;,

Pif=———"—F——
2+ 2wpés + w2

(8)
with K = 3900, w, = 0.03 and £ = 0.7. The stability
and performance objectives need to be satisfied under all
possible model uncertainties described in the previous sec-
tion. In addition, the insulin pump is limited to values of
100 mU/min in order to meet practical saturation constraints
imposed by commercial pumps [8].

Furthermore, two important practical issues have been
considered here: measurement noise in the glucose monitors
and delay between subcutaneous and intravenous insulin
levels, assuming semi-invasive pump technology is used.

4.1. LPV Design. The controller has been designed based
on a Single Quadratic Lyapunov Function (SQLF) with pole
placement constraints [41]. The latter has been used to avoid
the fast pole phenomena which is typical of this type of
controllers.

The meal perturbations can take very different values and
dynamics, but in this framework they have been modelled as
a set of (normalized) disturbances ||d||, < 1.

The final objective is to achieve the smallest tracking
error in the glucose levels for meal disturbances, under all
possible model uncertainties considered and for the reference
profile mentioned previously. Therefore, robust performance
can be defined as follows:

min |G, VIdl,<1, V& e [-1L1], i=n2,3. (9

Robust performance analysis is carried out using the
structured singular value (SSV) under parametric uncer-
tainty [26, 27]. The resulting measure was taken at glucose
levels (40, 60, 80, 100, and 120) mg/dL, showing the designed
controller meets robustness requirements against the usual
uncertainty considered for this problem [8] (note in
Figure 3(a) that all the SSV are below unity). This means that
the controller achieves the lowest tracking error (measured in
terms of its energy) for all possible energy bounded distur-
bances, for the worst case model uncertainty combination,
and the worst case scenario (in terms of glucose levels). This
is a very strong result, particularly because it has theoretical
guarantees in terms of performance and robustness.

The result is presented in Figure 4 and shows how the
tracking error is reduced. Note in the same figure that the
injected insulin levels are specifically bounded by 100 mU/
min. The first saturation in this signal produces a 176 mg/dL
peak in the glucose levels, which rapidly follows the normal
(reference) curve.

The controller implementation needs a measurement of
the glucose level, which is considered simultaneously as the
output y(t) and as a time-varying parameter p(t) of the
system. The dynamics of the controller therefore changes in
real time according to this parameter p(t), that is, u(t) =
Kp(t)] * G(t) (see Figure 1).

The output of the controller provides the necessary in-
stantaneous insulin rate for the patient. Its complexity is rea-
sonable (5th order) and in accordance with the model’s dy-
namics. It can be implemented with commercially available
hardware.

In addition, a 30-minute delay combined with a 5 mg/dL
band-limited random error in the glucose measurement are
applied to this system as indicated in Figure 2. Figure 5 shows
that performance is degraded when these practical issues are
accounted for in the simulation. In spite of the fact that
the peak now increases to 200 mg/dL, proper tracking of
the reference profile is achieved. This illustrates the design’s
robustness.
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FIGURE 3: Structured singular value for parametric uncertainties and glucose levels (40, 60, 80, 100, and 120) mg/dL for (a) LPV, (b) UC.
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FIGURE 4: LPV control: glucose monitoring and insulin control.
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4.2. UC Design. Here, 5 candidate controllers have been
designed according to the previous specifications at different
glucose levels (linearization points): (40, 60, 80, 100, and
120) mg/dL, denoted K; to Ks, respectively. The designs have
been performed using the #. optimal control methodology.

In all cases the performance objective has been defined
as a combination of the tracking error and control action,
weighted by W, and W,,, respectively, as follows

W, (5)S(s)

min<|y such that Wu(s)K(s)S(s)] ) < )/]’, (10)
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FIGURE 5: LPV control: glucose monitoring and insulin control
under actuator delay and measurement noise.

where S(s) is the sensitivity function of the closed loop.
Therefore, the falsifier cost function reflects this objective
and has been constructed as Tgpec (W, (r — y)||2T +
IWyaullyr — pllirllar < 0.

As in the previous design, the robust performance test
has been performed via the structured singular values for all
5 controllers and is illustrated in Figure 3(b). All values are
below unity, therefore the desired performance is achieved at
all linearization points and for all possible combinations of
the uncertain parameters.
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Ficure 6: Unfalsified control: glucose monitoring, insulin control
and controller switching.

Time simulations with the UC in the loop can be ob-
served in Figure 6. Glucose levels follow the normal (ref-
erence) response after the meal disturbance with a better
performance than the LPV case. Insulin injection is limited
to 100 mU/min at the beginning which does not destabilize
the closed loop system, although it leaves a 167 mg/dL peak
due to this saturation. Controller switching is depicted in
Figure 6, which changes between controllers K; and K5 at the
beginning, with a short change to controller K, before the
first 100 minutes. From there on, controller K; follows the
reference very tightly up to the end of the 10-hour period.
No transient behavior due to controller switching can be
noticed.
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Ficure 7: Unfalsified control: glucose monitoring, insulin control
and controller switching under measurement noise.

As in the previous subsection, a 5mg/dL band-limited
random error in the glucose measurement is applied to this
system and its performance is indicated in Figure 7. Here,
glucose level profiles are almost the same, with changes in the
insulin injection profiles. Instead, when a 30-minute delay
is applied in the actuator, UC does not respond as well and
decreases to levels near to hypoglycaemia.

4.3. Final Comments. From a certain perspective, the falsifier
selects the most adequate controller as if it estimated the
scheduling parameter p, which the LPV needs to measure
in real time. In general, this is an advantage of UC over
LPV because there is no need to measure a parameter, which
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TaBLE 2: Noninvasive glucose-meters.

Name Description

Status

Cybiocare (Photonic Medical Devices)
SCOUT DS (VeraLight)

GlucoTrack (Integrity Applications)
LighTouch Medical, Inc.

OrSense Ltd

Sentek

Symphony (Sontra Medical)

Infrared technology

Spectroscopy

Visual Pathways Inc.

Fluorescence spectroscopy
Ultrasound, conductivity and heat capacity (ear clip)

Proprietary occlusion spectroscopy
Patented crystalline colloidal array (CCA)

Fluid measurement (anterior chamber of eye)

Clinical testing

Restricted to investigational use only
EU approval, waiting for FDA

Not submitted to FDA

FDA approval for NBM 200-G
Licensed University of Pittsburgh

Ultrasonically permeated skin

Federal Grant

in many cases could be unavailable or suffer from large
measurement errors. Another advantage is that theoretically,
the controller at the operating point could be designed in a
less conservative way, thus offering better performance. This
is the case here, illustrated by Figures 4 and 6, where UC has
a tighter tracking of the reference. The disadvantage of UC is
that practical controller selection could be more difficult in
many cases.

In the LPV case, the design is carried out for all operating
conditions simultaneously, which guarantees stability and a
smooth transition between operating points. This, in general,
produces lower performance. A consequence possibly due
to guaranteed stability and smooth controller scheduling, is
that the LPV controller has better robustness characteristics
against actuator delays, as indicated at the end of Section 4.2.

In a first stage, both controllers could be used as part
of a glucose monitor which provides an indication for the
patient as to how much insulin he needs at any given time. In
a further development stage, they could be used to close the
loop between a glucose monitor and a insulin pump. In order
to do this, some technological issues need to be mentioned.

To build a device which could implement any of these
algorithms, a semi-invasive or noninvasive glucose monitor
would be necessary. Similarly, at least a semi-invasive insulin
delivery system would be desirable. In the case of noninvasive
sensors, there are great efforts to develop a commercially
available product, but there is still work to be done until such
a product exists (see Table 2).

Two other important issues that should also be consid-
ered, based on previous sensor and actuator technologies, are
glucose measurement errors and time delay, both in insulin
delivery and glucose monitoring. As presented previously,
time delay can significantly influence controller performance
in the UC case.

5. Conclusions and Future Research

This work has considered several important and practical
issues in the automatic control of glucose levels in blood:
model uncertainty, time variations, nonlinearities, measure-
ment noise, actuator delay and saturation, and real time
implementation. All of them can be handled in an LPV and
UC framework, which are time-varying controller method-
ologies. In the first case with a smooth transition among

controllers, and in the second via switching. Both are imple-
mented online in a very simple way.

Future research which approaches the controller design
problem based upon more accurate models, as the 19th order
one due to Sorensen [4], needs to be done. The existing
LPV model [11] linearizes at different operating points and
combines those models as vertices of a convex set, but it is not
clear if this affine-LPV model would mimic the actual phe-
nomena. Interpolation of vertex models into an LPV format
is not a trivial task, not to mention if also closed-loop stabil-
ity and performance need to be considered [42]. Instead, an
LPV model could be attempted by taking the original non-
linear one into consideration and broadening the parameter
dependence from the mere affine combination. This could
be done by using a more general linear fractional trans-
formation (LFT) parameter dependency. The controller
design based on such a model could use the FBM LPV meth-
odology [23], which may still be solved through a finite num-
ber of LMI computations.

As mentioned along this work, time delays in insulin in-
jection and glucose measurement due to subcutaneous appli-
cation are important issues to continue exploring when de-
signing controllers for this application.

Finally, identification and model invalidation experi-
ments [43] also need to be performed in order to obtain a
more precise description of this complicated phenomena. To
this end, a first stage could be attempted based on a High-
Fidelity simulator (in silico experiments), which may include
better sensor and actuator models. This may allow to com-
plete a series of identification, invalidation and control tests
before turning into in vivo experimentation.

Acknowledgments

The first author gratefully acknowledges the PRH Program
of the Ministry of Science and Technology of Argentina and
also the motivating mails and talks with Sofia Perazzo and
her son Benjamin, which inspired this research.

References

[1] H. Shamoon, H. Duffy, N. Fleischer et al., “The effect of
intensive treatment of diabetes on the development and
progression of long-term complications in insulin-dependent



Journal of Electrical and Computer Engineering

diabetes mellitus,” The New England Journal of Medicine,
vol. 329, no. 14, pp. 977-986, 1993.

[2] A. Makroglou, J. Li, and Y. Kuang, “Mathematical models

and software tools for the glucose-insulin regulatory system

and diabetes: an overview,” Applied Numerical Mathematics,

vol. 56, no. 3-4, pp. 559-573, 2006.

G. Cocha, V. Constanza, and C. D’Atellis, “Control nolineal de

la diabetes mellitus Tipo I,” in Actas de la RPIC, pp. 240-245,

Rosario, Argentina, 2009.

[4] J. Sorensen, A physiologic model of glucose metabolism in man
and its use to design and asses improved insulin therapies for
diabetes, Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge, Mass, USA, 1985.

[5] L. Kovécs, B. Benyd, Z. Benyd, and A. Kovacs, “Past and
present of automatic glucose-insulin control research at
BME,” in Proceedings of the 10th International Symposium of
Hungarian Researchers, pp. 245-252, 2009.

[6] F Chee and T. Fernando, Closed-Loop Control of Blood Glucose,
vol. 368, Springer, Berlin, Germany, 2007.

[7] J. Bondia, J. Vehi, C. Palerm, and P. Herrero, “El pancreas
artificial: control automatico de infusion de insulina en dia-
betes mellitus tipo 1,” Revista Iberoamericana de Automadtica e
Informatica industrial, vol. 7, no. 2, pp. 5-20, 2010.

[8] P. Dua, E J. Doyle III, and E. N. Pistikopoulos, “Model-
based blood glucose control for type 1 diabetes via parametric
programming,” IEEE Transactions on Biomedical Engineering,
vol. 53, no. 8, pp. 1478-1491, 2006.

[9] E. Ruiz-Velazquez, R. Femat, and D. U. Campos-Delgado,
“Blood glucose control for type I diabetes mellitus: a robust
tracking H., problem,” Control Engineering Practice, vol. 12,
no. 9, pp. 1179-1195, 2004.

[10] R. S. Parker, F. J. Doyle III, J. H. Ward, and N. A. Peppas,
“Robust H., glucose control in diabetes using a physiological
model,” AIChE Journal, vol. 46, no. 12, pp. 2537-2546, 2000.

[11] L. Kovécs and B. Kulcsar, “LPV modeling of type I diabetes
mellitus,” in Proceedings of the 8th International Symposium of
Hungarian Researchers, pp. 163—173, 2007.

[12] L. Kovacs, B. Kulcsar, J. Bokor, and Z. Benyd, “Model-based
nonlinear optimal blood glucose control of type I diabetes
patients,” in Proceedings of the Annual International Conference
of the IEEE Engineering in Medicine and Biology Society,
pp- 1607-1610, Vancouver, Canada, 2008.

[13] L.Kovacs, B. Benyd, J. Bokor, and Z. Beny6, “Induced L,-norm
minimization of glucose-insulin system for Type I diabetic
patients,” Computer Methods and Programs in Biomedicine,
vol. 102, no. 2, pp. 105-118, 2011.

[14] R. S. Sanchez Pena and A. S. Ghersin, “LPV control of glucose
for Diabetes type I,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC ’10), pp. 680—683, 2010.

[15] 2010, http://www.childrenwithdiabetes.com/continuous.htm.

[16] A. Caduff, M. S. Talary, M. Mueller et al., “Non-invasive
glucose monitoring in patients with Type 1 diabetes: a
multisensor system combining sensors for dielectric and
optical characterisation of skin,” Biosensors and Bioelectronics,
vol. 24, no. 9, pp. 2778-2784, 2009.

[17] C.E. Ferrante do Amaral and B. Wolf, “Current development
in non-invasive glucose monitoring,” Medical Engineering and
Physics, vol. 30, no. 5, pp. 541-549, 2008.

[18] 2010, http://www.diabetesnet.com/diabetes-technology/insu-
lin-pumps.

[19] D. Campos-Delgado and A. Gordillo-Moscoso, “Regulacién
de glucosa en pacientes diabéticos a través de infusiones
subcutdneas: retos y perspectivas,” in Congreso Nacional de

[3

la Asociacion de México de Control Automdtico (AMCA 04),
Mexico D.E., Mexico, October 2004.

[20] P. Gahinet and P. Apkarian, “Linear matrix inequality
approach to Hs control,” International Journal of Robust and
Nonlinear Control, vol. 4, no. 4, pp. 421-448, 1994.

[21] G. Becker and A. Packard, “Robust performance of linear
parametrically varying systems using parametrically-depend-
ent linear feedback,” Systems and Control Letters, vol. 23, no. 3,
pp. 205215, 1994.

[22] A. Packard, “Gain scheduling via LFTs,” Systems and Control
Letters, vol. 22, pp. 79-92, 1993.

[23] C. W. Scherer, “LPV control and full block multipliers,”
Automatica, vol. 37, no. 3, pp. 361-375, 2001.

[24] J. S. Shamma and M. Athans, “Gain scheduling: potential haz-
ards and possible remedies,” IEEE Control Systems Magazine,
vol. 12, no. 3, pp. 101-107, 1992.

[25] G. E. Dullerud and F. Paganini, A Course in Robust Control
Theory: A Convex Approach, Texts in Applied Mathematics,
Springer, Berlin, Germany, 2000.

[26] R. S. Sanchez Pena and M. Sznaier, Robust Systems Theory and
Applications, John Wiley & Sons, New York, NY, USA, 1998.

[27] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal
Control, Prentice-Hall, Upper Saddle River, NJ, USA, 1996.

[28] S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory, vol. 15,
SIAM Studies in Applied Mathematics, Philadelphia, Pa, USA,
1994.

[29] C. Scherer and S. Weiland, Linear Matrix Inequalities in Con-
trol, Dutch Institute of Systems and Control, 2005.

[30] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI
Control Toolbox, The Mathworks, Inc., 1995.

[31] J. E Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for op-
timization over symmetric cones,” Optimization Methods and
Software, vol. 11-12, no. 1, pp. 625-653, 1999.

[32] K. C. Toh, R. H. Tiitiincii, and M. J. Todd, “SDPT3—
a MATLAB software package for semidefinite-quadratic-
linear programming,” 2007, http://www.math.cmu.edu/~reha/
sdpt3.html.

[33] L. Kovécs, B. Kulcsér, J. Bokor, and Z. Beny6, “LPV fault
detection of glucose-insulin system,” in Proceedings of the 14th
Mediterranean Conference on Control and Automation (MED
’06), Ancone, Italy, 2006.

[34] M. G. Safonov, “Control using logic-based switching,” in
Focusing on the Knowable: Controller Invalidation and Learn-
ing, pp. 224-233, Springer, Berlin, Germany, 1996.

[35] M. G. Safonovand T. C. Tsao, “The unfalsified control concept
and learning,” IEEE Transactions on Automatic Control, vol. 42,
no. 6, pp. 843-847, 1997.

[36] T. F. Brozenec, T. C. Tsao, and M. G. Safonov, “Controller val-
idation,” International Journal of Adaptive Control and Signal
Processing, vol. 15, no. 5, pp. 431-444, 2001.

[37] K. R. Popper, Conjectures and Refutations: The Growth of
Scientific Knowledge, Routledge, London, UK, 1963.

[38] M. Jun and M. G. Safonov, “Automatic PID tuning: an
application of unfalsified control,” in Proceedings of the IEEE
International Symposium on Computer Aided Control System
Design, pp. 328-333, Kohala Coast, Hawaii, USA, August 1999.

[39] A.Ingimundarson and R. S. Sanchez Pena, “Using the unfalsi-
fied control concept to achieve fault tolerance,” in Proceedings
of the 17th World Congress the International Federation of
Automatic Control (IFAC ’08), vol. 17, pp. 1236-1242, Seoul,
Korea, July 2008.

[40] T. C. Tsao and M. G. Safonov, “Unfalsified direct adaptive
control of a two-link robot arm,” International Journal of



10

(41]

[42

[43]

Adaptive Control and Signal Processing, vol. 15, no. 3, pp. 319—
334, 2001.

A. S. Ghersin and R. S. Sanchez Pefia, “LPV control of a 6-DOF
vehicle,” IEEE Transactions on Control Systems Technology,
vol. 10, no. 6, pp. 883-887, 2002.

E Bianchi and R. S. Sanchez Pefna, “Interpolation for gain
scheduled control with guarantees,” Automatica, vol. 47,
pp. 239-243,2011.

E. D. Bianchi and R. S. Sanchez-Penia, “Robust identifica-
tion/invalidation in an LPV framework,” International Journal
of Robust and Nonlinear Control, vol. 20, no. 3, pp. 301-312,
2010.

Journal of Electrical and Computer Engineering



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

o

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



