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Abstract—This paper presents the mechatronics design,
modeling, simulation, implementation and control of an in-
verted pendulum by applying controlled torques to a reaction
wheel. We present a method for finding an optimal mechanical
design of the pendulum and reaction wheel for a given electric
motor and wheel diameter that maximizes the recovery angle.
This paper also describes which parameters to look for during
the electric motor selection as well as a method for simulating
and comparing the performance of different motors. Finally the
real system implementation is described and its performance
is compared with simulation. The final design is 34 centimeters
tall and can stabilize after being released from an angle of 26
degrees from the vertical. This work was carried out within an
undergraduate course on Digital Control Systems at Instituto
Tecnológico de Buenos Aires.

Resumen— Este trabajo presenta el diseño mecatrónico,
modelado, simulación, implementación y control de un péndulo
invertido balanceado con una rueda de inercia. Se presenta
un método para encontrar un diseño mecánico óptimo de la
rueda de inercia para un dado motor eléctrico y diámetro
de la rueda que maximiza la estabilidad contra disturbios
externos. Este trabajo también describe qué parámetros son
de importancia a la hora de seleccionar un motor y provee un
método para comparar diferentes motores. La implementación
del sistema real es descripta y finalmente se compara el
desempeño del sistema real con el simulado. El diseño final
mide 34 centimetros de alto y puede estabilizarse después de
ser liberado de un ángulo de 26 grados con respecto a la
vertical. Este trabajo fue realizado durante un curso de grado
de Control Discreto en el Instituto Tecnológico de Buenos Aires.

I. INTRODUCTION

The reaction wheel balanced inverted pendulum problem
has been solved by many authors using several different
methods ( [1], [2], [3], [4] ).

This paper analyses the mechatronic design of such a
system by identifying how the parameters affect the control
system performance and present methods for finding optimal
solutions for this problem. The system performance is
quantified by finding the maximum angle from which the
pendulum can stabilize after being released with the wheel
at rest. This is the parameter that is being optimized on this
paper.

A video of the system in action can be found at [5].
4 methods to optimize this parameter are presented. The

first method analyzes how different pendulum heights affect
the system performance. The second method analyzes how
to find the optimal dimensions of the reaction wheel for
a given electric motor. The third method identifies the
optimal motor reduction coefficient. The fourth method is
for comparing different motor options and finding the most
suitable for the application.

Fig. 1. Implemented System. Front View

Fig. 2. Implemented System. Side View



Fig. 3. Coordinate system and name convention definition.

II. SYSTEM MODELING

A. Notation

• Mm : Motor Mass.
• MR : Reaction Wheel Mass.
• Mb : Pendulum Arm Mass.
• bb : Pendulum Arm axis viscous friction.
• lb : Pendulum Arm center of mass distance to axis.
• lm : Motor center of mass distance to axis.
• lR : Reaction wheel center of mass distance to axis.
• g : Gravitational acceleration.
• τc : Effective Motor Control torque.
Inertia:
• Ibo : Pendulum with respect to point o.
• Iro : Reaction wheel with respect to point o.
• Imo : Motor with respect to point o.
• IR : Reaction wheel with respect to its center of mass.
Angular Speed:
• ωR : wheel speed with respect to pendulum arm.
• ωInertial : wheel inertial speed.

B. Non-linear Model

Fig. 1 and Fig. 2 show the implemented system. Fig. 3
shows the coordinate system definition used to model the
system. To model the dynamics of the system, distances,
velocities and accelerations must expressed with respect to
an inertial frame. The equation of motion of the pendulum

is:
Iso θ̈ = kmgl · sin θ − bb · θ̇ − τc (1)

where:

Iso = Ibo + Iro + Imo (2)
kmgl = (Mb · lb +Mm · lm +MR · lR) · g (3)

and

Iro =MR · l2R (4)

Imo =Mm · l2m (5)

with Iso being the total inertia of the pendulum and kmgl
being the mass-gravity-length constant. The equation of
motion of the reaction wheel is:

IR · ω̇Inertial = τc (6)

It should be noted that for equation (6) the inertial angular
velocity ωIntertial will not be directly measured. Instead,
the relative velocity between the reaction wheel and the
pendulum arm ωR will be. The relation between these
velocities is:

ωInertial = θ̇ + ωR (7)

The reaction wheel and the pendulum arm will accelerate
due to the effective motor control torque τc. This torque
is given by the following equations that model the electric
motor:{

τc = τe − bR · ωR − τfd · sgn(ωR) if |ωR| > 0 (8a)
τc = 0 if ωR = 0 and τe < τfe (8b)

where:
• τe : Electric torque
• bR : Motor viscous friction coefficient
• τfd : Dynamic friction torque
• τfe : Static friction torque
• sgn() : sign function
Lastly the electric torque is given by the electromechan-

ical model of the motor:{
τe = kt · i (9a)

R · i+ L · di
dt

= u(t)− ke · ωR (9b)

where:
• R : Motor coil resistance
• L : Motor coil inductance
• kt : Motor Torque constant
• ke : Motor EMF constant
• u(t) : Motor terminal voltage

C. Model Linearization

The system is linearized around the steady state point:{
θ∗ = 0 (10a)
ω∗R = 0 (10b)

In equation (1), sin θ is linearized around θ∗ as θ. No de-
viation variables need to be defined because the linearization
point is at θ = 0.

To linearize equations (8a) and (8b) around ωR = 0, the
dynamic and static frictions cannot be linearized and are
therefore ignored. This can be done because they do not
have a significant effect on the dynamics of the system.



The linearized system of equations that model the system
are: 

Iso · θ̈ = kmgl · θ − bb · θ̇ − τc
IR · ω̇Inertial = τc

τc = τe − bR · ωR
τe = kt · i

R · i+ L · di
dt

= u(t)− ke · ωR

ωR = ωInertial − θ̇

(11)
(12)
(13)
(14)

(15)

(16)

D. State Space Representation

The number of state variables for a system is equal to
the number of independent energy storage elements in the
system. For this reaction wheel inverted pendulum, four
energy storage elements can be identified:

1) Gravitational potential energy of the system.
2) Angular kinetic energy of the system.
3) Angular kinetic energy of the reaction wheel.
4) Magnetic energy stored in the coils of the motor.

The state variables that correspond to these energy storage
elements are:

1) θ: Angular position of the pendulum.
2) θ̇: Angular velocity of the pendulum.
3) ωR: Angular velocity of the reaction wheel.
4) i: Electric current through the motor respectively.
The current can be ignored because the time constant of

the RL circuit of the electric motor is very small compared
to the mechanical time constants of the rest of the system.
Setting L = 0 approximates this time constant from very
small to zero and therefore eliminating the current as another
state variable. The state variables of the system are:

x1 = θ (17)

x2 = θ̇ (18)
x3 = ωR (19)

Relative angular velocity ωR is defined as a state variable
instead of ωInercial because, as mentioned before, the
encoder mounted on the pendulum will be measuring the
relative angular velocity ωR.

Because of the definition of the state variables, the dy-
namic equation of the first state is:

ẋ1 = x2 (20)

By combining equations (13), (14), (15) and substituting
ωR for x3, we have:

τc =
kt
R
u(t)− (

kt
R
ke + bR)x3 (21)

The dynamic equation of the second state is given by
equation (11). Substituting equation (21) we have:

ẋ2 =
kmgl
Iso

x1−
bb
Iso

x2+
(ktR ke + bR)

Iso
x3−

kt
RIso

u(t) (22)

The dynamic equation of the third state can be found by
taking equation (12) and replacing both the derivative of
equation (16) and equation (21) we have:

IR(ω̇R + θ̈) =
kt
R
u(t)− (

kt
R
ke + bR)x3 (23)

Then taking equation (23), substituting ω̇R for ẋ3 and θ̈
for ẋ2, then substituting ẋ2 for equation (22) and finally
isolating ẋ3 we obtain:

ẋ3 = −kmgl
Iso

x1 +
bb
Iso

x2−
Iso + IR
IsoIR

(bR+
kekt
R

)x3 + . . .

· · ·+ Iso + IR
IsoIR

kt
R
u(t) (24)

Lastly we can express the state space equations in the
following matrix form:

Ẋ = AX +Bu(t) (25)

y = CX +Du(t) (26)

with the matrices being:

A =

 0 1 0
kmgl

Iso
− bb
Iso

ktke
RIso

+ bR
Iso

−kmgl

Iso
bb
Iso

− Iso+IRIsoIR
(bR + kekt

R )

 (27)

B =

 0

− kt
RIso

Iso+IR
IsoIR

kt
R

 (28)

Because all the state variables will be measured, we have:

C =

 1 0 0
0 1 0
0 0 1

 (29)

D = [0] (30)

III. SIMULATION

Both linear and non-linear simulations of the system
were implemented on MATLAB Simulink [6]. The linear
simulation was used to run batch simulations in a time
efficient manner for system optimization. The non-linear
simulation was mainly used to validate the predictions of
the linear simulation and to compare the performance with
the real system.

IV. SYSTEM PERFORMANCE EVALUATION CRITERIA

It’s clear that for a given reaction wheel inverted pendu-
lum, the control authority that the motor has over the system
depends on the motor characteristics, the dimensions of the
pendulum arm and the dimensions of the reaction wheel.

This control authority can be quantified by finding the
recovery angle of the system, which is the maximum angle
from which the pendulum can become upright by applying
full voltage on the motor after being released with no
velocity on the reaction wheel.

To find the recovery angle of a given pendulum, a binary
search algorithm is performed starting with an initial angle
and applying the following conditions:
• If the pendulum cannot stabilize, then the angle is too

high decrease angle.
• If the pendulum can stabilize, then the angle is too low

increase angle.
We also refer to control authority as system performance.



V. MECHANICAL DESIGN

The mechanical design of the pendulum arm and reaction
wheel aims to maximize the system performance while
being simple to manufacture and assemble. The general
design procedure of each part consists of:

1) Defining the general geometry of the part with ease
of manufacturing and assembly in mind.

2) Parametrize the model of the system.
3) Identify which parameters have the greatest impact on

the recovery angle.
4) Make an educated guess on how varying these param-

eters will affect system performance by looking at the
form of the equations.

5) Performing batch simulations of the system sweeping
through different values and generating plots.

6) Analyze the plot and determine the optimal value, if
any.

The mechanical design is an iterative process including
the motor selection. This section will describe the design
methodologies used to design each part. The parameter
sweep plots presented in this section were performed on
the final mechanical design of the system to show the
effect that varying these parameters have on the recovery
angle. However, because at the time of mechanical design
the electric motor was unavailable, these simulations use
an estimated model of the electric motor, yielding slightly
different recovery angle values than in Sections VIII, IX, X
which use a model of the characterized motor. Table I shows
the values of the principal dimensions for the final design.

TABLE I
MODEL PARAMETERS

Parameter Value Unit
lr 207 mm
bp 20 mm
ap 30 mm
Rr 105 mm
ar 10 mm
b 5 mm
t 19 mm
ke 0.4105 V s

kt 0.3568 Nm
A

R 2.5 Ω

A. Pendulum Arm Design

Fig. 4 show the general dimensions of the pendulum arm.
The lower part attaches to a rotating shaft and the upper
part holds the electric motor. Dimensions ap and bp are
chosen for ease of manufacture and to provide stiffness to
the arm, the effect of varying these dimensions on the system
performance is very small.

However the length of the pendulum lr does have a
significant impact on the recovery angle. We can understand
this qualitatively by analyzing the sum of forces at an instant
in time where the pendulum is at an angle θ, the wheel has
no angular velocity and the motor is generating its maximum
torque τmax. From equation (1), the condition that makes
θ̈ negative, and therefore accelerating towards the stable
position, is:

τmax ≥ kmgl · sin θ (31)

Fig. 4. Pendulum arm general dimensions.

therefore the maximum angle that makes θ̈ negative is

θmax = sin−1(
τmax
kmgl

) (32)

for angles from 0 to π
2 , sin−1() is an increasing function and

therefore to increase θmax, we need to decrease kmgl. From
the definition of kmgl, considering that lR, lm and lb are
proportional to the pendulum arm length, we can conclude
that decreasing the this length increases the recovery angle.

Moreover, we arrive to the same conclusion by analyzing
the dynamic behavior of the system given by equation (1)
by ignoring the effects of gravity and friction we get:

θ̈ = − τc
Iso

(33)

which shows that the motor will produce greater acceleration
θ̈ for the same torque if the inertia Iso is lower.

Given that

Iso = Ibo + Iro + Imo =∝Mb · l2b +MR · l2R +Mm · l2m

it can be sen that Iso is reduced by reducing the length of
the pendulum arm.

UHMW (Ultra-high-molecular-weight polyethylene) was
used as the material for the pendulum arm given that
equations (2) and (3) have a term that increases linearly
with Mb, meaning that a light material is needed. These
predictions match the results found in simulation shown in
Fig. 5.

This means that there is no optimal value for the pendu-
lum height and it has to be chosen arbitrarily. We chose 30
degrees as the recovery angle of our system, which from
Fig. 5 corresponds to a 207 mm long pendulum arm.

B. Reaction Wheel Design

The reaction wheel influences the dynamics of the system
with its mass MR as it can be seen in equation (1), and its
inertia IR as it can be seen in equation (6).

The design of the reaction wheel should aim to reduce
the mass MR as it decreases kmgl and Iso because both
have a term proportional to MR. Section V-A shows that
decreasing these parameters increases the recovery angle of
the system.



Fig. 5. Recovery angle plot of a system with varying length.

The design of the reaction wheel should aim to increase
the inertia IR as it increases the time the motor imparts
torque on the arm, increasing the recovery angle. This is
because a greater inertia leads to less angular acceleration
for the same torque and therefore the time constant for
the motor to reach saturation is larger. This can be seen
in equations (34a) and (34b), obtained by ignoring the
inductance in the electromechanical equations of the motor.

ω̇ =
τc
IR

(34a)

τe =
kt
R
u(t)− ktke

R
ω (34b)

The geometry of the reaction wheel consists of a shaft
coupling at its center, three spokes and an outer rim. The
geometry and dimensions of the coupling are defined by the
motor shaft and the set screws. The spokes have a thickness
b and a width aR (Fig. 6). To maximize system performance,
these spokes should be as thin as possible. However, because
it’s easier to manufacture, depth b is chosen to match the
thickness of the outer rim and spoke width aR should be
chosen big enough so that it can withstand machining forces
during milling without bending.

Finally we are left with dimensions Rr, b and t (Fig. 7)
which can be chosen to maximize the system performance.

Fig. 6. Reaction wheel isometric view showing spokes dimensions.

Fig. 7. Reaction wheel outer rim section view with general dimensions.
Not including spokes.

1) Optimal Reaction wheel outer rim width t: To analyze
how the recovery angle varies by changing t, we turn to
simulation.

Fig. 8 shows how the recovery angle changes as we
vary t while keeping all other parameters constant (motor
characteristics, pendulum length, wheel thickness b, wheel
radius).

It can be seen that there is an optimal value for the rim
width t for this given set of parameters.

After performing the same analysis for different sets of
parameters it was found that every set of parameters has
an optimal value of t that maximizes the recovery angle.
This is one of the most important results in this work
because it renders one less independent value to analyze.
In the analysis that follows, the optimal value for t will
be calculated for every change in the other parameters. This
can be done because the rim width has no manufacturability
limitations.

Fig. 8. Effect of varying t on the recovery angle.

2) Reaction wheel thickness b: To analyze the influence
of this parameter, we perform a parameter sweep on the
system for different values of b. Considering the result found
in 1) that states that every set of parameters has an optimal
value for t; we perform this parameter sweep by keeping
almost all parameters constant except for t. For every value
of b an optimal value of t is computed.

Fig. 9 and 10 show the results of this set of simulations.
For this given pendulum, there is an optimal value of b at
8mm with a recovery angle of 31 degrees.

It should be noted on Fig. 9 that the sensitivity of the
recovery angle to b near the optimal value is very small
(recovery angle greater than 30 degrees for b values from
4.7mm to 15.4mm), meaning that b can differ from the
optimal value to satisfy other constraints without producing



Fig. 9. Effect of varying b on the recovery angle.

Fig. 10. Effect of varying b on the optimal reaction wheel mass.

a great reduction in the recovery angle. This is convenient
because a reaction wheel with smaller b requires less raw
materials, is easier to manufacture and is lighter (Fig. 10).
For this reason b = 5mm was chosen.

3) Reaction wheel radius Rr: Increasing Rr leads to
an increase in the recovery angle of the system. This can
be seen in Fig. 11, which was obtained by iterating over
different systems varying Rr and optimizing t for each
iteration.

Fig. 11. Recovery angles for systems of increasing wheel radius and
optimal rim width t in each case.

This behavior is expected because the wheel inertia Ir is
proportional to Mr and approximately proportional to R2

r ,
this makes it possible to increase the wheel inertia while
decreasing its mass, which increases recovery angle.

For this project we selected Rr = 105mm which is the

biggest radius that could be machined with the available
lathe.

4) Reaction wheel material density: To analyze the effect
of this variable, we can vary ρ from 500 kgm3 to 20000 kgm3

which covers almost all the possible material densities
available.This parameter sweep was performed by keeping
almost all parameters constant and varying ρ while calcu-
lating the optimal value for t for every given ρ.

These results can be seen in Fig. 12 which shows a steep
increase in recovery angle for ρ from 1000 kgm3 to about
8000 kgm3 , meaning that materials such as plastics with a
density of about 900 kgm3 and aluminum with 2700 kgm3 are not
good choices compared to steel with a density of 7870 kgm3 .

However, for materials denser than steel there is not a big
increase in angle and, for even denser materials, the recovery
angle decreases.

For these reasons, steel was chosen as the reaction wheel
material.

Fig. 12. Recovery angles for varying ρ with optimal t for every given ρ.

VI. MOTOR SELECTION

The two main requirements for the electric motor are:
High Stall Torque which leads to higher recovery angle

values as seen in equation (32). To achieve this, high kt and
low R is needed as shown in equation (35).

τmax = kt
u

R
(35)

High Maximum Angular Velocity which allows the motor
to apply torque for a longer amount of time as shown in
equations (34a) and (34b). To achieve this, low ke is needed
as seen in equation (36).

ωmax =
u

ke
(36)

Note that kt and ke are modeled separately, even though
they are theoretically equal. This is because their measured
value is not equal due to effects like friction. However, they
are still mutually proportional.

To summarize, the high stall torque requirement demands
for a high motor constant while the high maximum angular
velocity requires a low motor constant. This means that there
is an optimal value that satisfies both conditions.



A. Gearbox Ratio Optimization

The motor constants can be changed by changing the
gearbox ratio as shown in equation (37).

kt = K · ktm (37)
ke = K · kem (38)

Where ktm and kem are the motor constants of the electric
motor without gearbox and K is the gearbox ratio.

After defining the pendulum length, reaction wheel radius
and b, the gear ratio can be optimized by varying K and
calculating the optimal t for every value of K.

Fig. 13 shows that there is an optimal value of k at 10.

Fig. 13. Recovery angles for varying K with optimal t for every given
K.

Due to availability, a gear ratio of 16 was chosen.

VII. ELECTRICAL DIAGRAM OF THE SYSTEM

Figure 14 shows a simplified diagram of the system. Two
encoders where used to measure the states of the system.
The system is plug and play and has its own power supply.

Fig. 14. Simplified electrical diagram of the system.

VIII. SYSTEM CHARACTERIZATION

A. Mass and Moment of Inertia

Because the geometry of each part is known, the moment
of inertia was calculated by just measuring their mass.

B. Motor Characterization

Subsection II-B enumerates all the characteristics of a
direct current motor.

Resistance R and inductance L were measured by the
use of an impedance measurement device while bR and τfd
were estimated by first calculating the total friction torque
when the motor operating at 24V with zero load. On steady
state, τc = 0. From equation (8a) we get that:

τe0 = bR · ωR0 + τfd (39)

τe0 is estimated by measuring the total power the motor is
using, subtracting the joule heating losses and calculating
the torque for the its angular velocity

τe0 =
u0i0 − i20R

ωR0
(40)

by connecting 24V to the motor, accelerating the reaction
wheel to its maximum speed and then disconnecting the
power supply (high impedance), both friction components
can be estimated. The following equation describes this
experiment:

IR · ω̇Inertial + bR · ωR + τfd = 0 (41)

Fig. 15 shows the results of this experiment. The values of
bR and τfd can be estimated as bR = 7.74×10−4Nms and
τfd = 0.067Nm by fitting equation (41) to the measured
data using equation (39) as a constraint.

Fig. 15. Decelerating reaction wheel from maximum speed at 24V
switched to high impedance at t=0 sec.

Motor constants ke and kt can be estimated as ke =
0.398V s and kt = 0.23NmA by fitting the experimental curve
obtained by applying a voltage step from 0V to 24V. This
experiment is described by equations (6), (8a), (9a) ,(9b)
and by taking θ̇ = 0 in equation (7).



Fig. 16 shows the experimental and simulated response
to a 24V step.

Fig. 16. Accelerating reaction wheel from maximum speed at 24V
switched to high impedance at t=0 sec.

IX. CONTROL SYSTEM DESIGN

A discrete time full state feedback control is used given
that all states of the system can be measured directly.

The poles of the continuous linear state space model of the
system (Eq (25), (26), (27) and (28)) are located at 1.07Hz,
−0.94Hz and −1.58Hz.

The sampling frequency is selected as 10 times the fre-
quency of the fastest pole of the open loop system, resulting
in f = 20Hz. After selecting the sampling frequency, a
discrete time description of the plant can be obtained as
follows [7]:

x[k + 1] = Gx[k] +Hu(k) (42)

Where

G =

 1.06 0.051 0.0009
2.41 1.06 0.0353
−1.98 −0.0526 0.6327

 (43)

H =

 −0.0023−0.0868
0.9028

 (44)

u(k) = K1θ(k) +K2θ̇(k) +K3ωR(k) (45)

The z-plane poles of the discretized system are located at
1.4015, 0.7432 and 0.6081.

The feedback constants are calculated using a LQR that
minimizes the cost function:

J =

∞∑
n=1

[xT (k)Qx(k) + uT (k)Ru(k)] (46)

The following weight matrices successfully stabilize the
system:

Q =

 1 0 0
0 1 0
0 0 1

 (47)

R = 1 (48)

Varying these weights does affect the system response to
disturbances, steady state oscillations and control effort.

Further tuning of the LQR control could be carried out
to improve transient behavior and robustness. However, this
work focuses on optimizing the recovery angle which is de-
signed under a saturated actuator, making it independent of
the control system. Given that only stabilization was sought,
the tuning of the LQR Q and R matrices is considered to
be out of the scope of this work.

The controller was implemented with the following state
feedback constants:

K1 = −124,K2 = −18.6,K3 = −0.957 (49)

X. REAL SYSTEM PERFORMANCE

To analyze the correspondence between the real system
and the simulated model, a recovery experiment was per-
formed by placing the pendulum at a 25◦ angle and turning
the control system on.

Fig. 17. Simulation and Real system recovering from an initial angle of
25◦.

Fig 17 shows the result of the experiment. It can be seen
that the real response is very close to the simulated response.
The main difference is on steady state, where the real system
presents an oscillation due to static friction on the electric
motor.

The predicted recovery angle from simulation also
matches the real recovery angle. Figures 19 and 18 show
two recovery experiments from 26.1◦ and 26.7◦ respectively
and their corresponding simulations. The real and simulated
systems were able to stabilize starting from 26.1◦ but they
were not able to stabilize from 26.7◦, meaning that the
exact recovery angle is between these two values, and that
simulation predicted the real recovery angle within less than
0.6◦.



Fig. 18. Recovery experiment from 26.1◦. The pendulum was able to
stabilize from this angle.

Fig. 19. Recovery experiment from 26.7◦. The pendulum was not able
to stabilize from this angle.

XI. CONCLUSION

The reaction wheel inverted pendulum system can be
optimized to maximize recovery angle and system per-
formance. This paper identifies the parameters that do or
do not influence the system performance, and describes
several design criteria for these parameters. Both the reaction
wheel rim width and the gearbox ratio have specific values
that maximize system performance for any given system.
Some other parameters should be increased or decreased to
maximize system performance until some other constraint
is reached.

Experiments show that the model of the system corre-
sponds to the real behavior, meaning that conclusions drawn
from simulations are valid in the real system.
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