
Instituto Tecnológico de Buenos Aires

An Analysis of Public Transport in the

City of Buenos Aires with MobilityDB

School of Engineering & Management

Presented to obtain the degree:
Informatics Engineer

Authors

Juan Godfrid - 56609
Pablo Radnic - 57013

Tutors

Alejandro Ariel Vaisman
Esteban Zimanyi

January 25th, 2020
Buenos Aires, Argentina

Instituto Tecnológico de Buenos Aires - 2020

Abstract

The General Transit Feed Specification (GTFS) is a data format used
to express public transportation schedules and associated geographic in-
formation created in 2006 by Google. It is now widely used all around
the world in both of its versions, GTFS Real-Time and GTFS Static. So
far, tools to analyze these data are not widely available in the open source
community. Companies that need to perform in-depth analysis must create
proprietary solutions which the public has no access to. MobilityDB is a
free and open source PostgreSQL and PostGIS extension that adds spatial
and temporal datatypes along with convenient functions, to facilitate the
analysis of mobility data. However, loading GTFS data into MobilityDB
must still be done in an ad-hoc fashion. Furthermore, obtaining GTFS
real-time data is an even more involved problem. This work describes how
MobilityDB is used to analyze public transport mobility in the city of Buenos
Aires. To this end, static and real-time GTFS data for the Buenos Aires
public transportation system were acquired, imported into MobilityDB, and
analyzed. Visualizations were also produced to enhance the analysis.

Page 2

Instituto Tecnológico de Buenos Aires - 2020

Contents

1 Introduction 5

2 State of the art 6
2.1 Preliminary Definitions . 6
2.2 The GTFS Specification . 6

2.2.1 GTFS-Static . 7
2.2.2 GTFS-Realtime . 8

2.3 MobilityDB . 9
2.3.1 Type System . 9
2.3.2 MobilityDB functions 10
2.3.3 Spatio-Temporal Object Implementation 11
2.3.4 Example Queries . 12

2.4 The SECONDO Moving Object Database 13
2.4.1 SECONDO queries . 13
2.4.2 Parallel SECONDO 14

2.5 MobilityDB vs SECONDO 14
2.5.1 Language Style . 14
2.5.2 BerlinMOD comparison 14
2.5.3 Decentralized Queries 14
2.5.4 Visualize query results 15

2.6 Map Matching . 15
2.6.1 Map Matching algorithms 15
2.6.2 Barefoot . 16

3 Case Study 17
3.1 Introduction . 17
3.2 Desired Schema . 19
3.3 GTFS Static . 19

3.3.1 Obtaining the Data 19
3.3.2 Data Structure . 20
3.3.3 Data Pre-processing and Importing 20

3.4 GTFS Realtime . 22
3.4.1 Obtaining the Data 22
3.4.2 Data Structure . 25
3.4.3 Data Pre-processing and Importing 25

3.5 Data Post-Processing . 27
3.5.1 SRID modifications 27
3.5.2 Lines with low sampling rate 28
3.5.3 Bus System Intersection 28

3.6 Map Matching . 28
3.6.1 Experience with Barefoot 28
3.6.2 Proof Of Concept Map Matching Algorithm 29

Page 3

3.7 Analysis and Results . 33
3.7.1 Tools . 33
3.7.2 GTFS-Static . 34
3.7.3 GTFS-Realtime . 37
3.7.4 GTFS Static and Realtime comparison 38

4 Conclusions 46

5 References 48

Instituto Tecnológico de Buenos Aires - 2020

1 Introduction

The ubiquity of GPS tracking devices and Internet of Thing (IoT) tech-
nologies has resulted in a collection of massive amounts of data that describe
the temporal evolution of such objects. This data abundance has made ana-
lytics tools such as specialized databases become of high importance to the
industry. Working solutions exist for querying spatial and temporal evolution
of objects, for example in Google Maps [4], to find the best route between
multiple points of interest, estimate the arrival time, and even predict traffic
of a certain route in a certain point in the future. However, these solutions
are proprietary and not available to the general public. Google Maps contains
a series of APIs [5] that can provide directions for transit, biking, driving, or
walking between multiple locations, calculate travel times and distances, and
determine the exact roads that a certain vehicle is traveling. Unfortunately,
these functionalities are limited since they do not provide a querying language
in which new use cases could be developed, and the evolution of these are
tied to Google’s interest in developing them. MobilityDB is an open-source
PostgreSQL and PostGIS extension designed to tackle this problem, pro-
viding a set of functions and spatio-temporal datatypes that, together with
PostGIS’s functionalities, create a flexible tool set to query spatio-temporal
objects.

The General Transit Feed Specification (GTFS) is a common format used
to outline public transportation schedules and real-time data with associated
geographic information. GTFS defines two standards, GTFS Static, which is
used to define schedules, and GTFS Realtime which is used to communicate
live positions of vehicles. This work shows how GTFS data can be used to
analyze the public transportation system of Buenos Aires with MobilityDB.
It describes the software used to acquire, import, and load the data, and then
query and visualize the results. The solutions described in this work cannot
be generalized to importing any GTFS dataset to MobilityDB because of
the wide spectrum of variations that the GTFS standard allows. However,
many datasets of GTFS transit information may share the same difficulties
importing the data with the datasets used; therefore this work can serve as
a guide on what to expect and what could be done to use a certain dataset
with MobilityDB.
The goals of this work are:

• Obtaining GTFS-Static and GTFS-Realtime data from the City of
Buenos Aires.

• Importing the data of both GTFS standards into MobilityDB.

• Querying the data using MobilityDB’s functionality for traffic analysis.

Page 5

Instituto Tecnológico de Buenos Aires - 2020

2 State of the art

This section studies the state of the art, the techniques and technologies
used. First, the basic terms will be defined, then GTFS-Static and GTFS-
Realtime will be explained in detail. This will be followed by an overview
and comparison of MobilityDB and SECONDO, another well known
Moving Object Database.

2.1 Preliminary Definitions

Definition 1 (Spatio-Temporal Objects) A Spatio-Temporal Object
is a uniquely identifiable entity that has a value in space and time for as long
as it is active.

Definition 2 (Moving Object) Moving objects are bodies (e.g., cars,
trucks, pedestrians) whose spatial features change continuously in time.
Spatio-temporal Data can be extracted from Moving objects by attaching
devices which produce GPS signals such as smart phones.

Definition 3 (Moving Object Database) A Moving Object Database
is a database with capabilities to store and query Spatio-Temporal Objects

Definition 4 (Route) A route, is a certain spatial trajectory that a moving
object can take, without a specific date or time associated to it.

Definition 5 (Trip) A trip is a route repeatedly traversed at a certain
time.

Definition 6 (Trajectory) A trajectory, is the continuous line that is
drawn by a spatio-temporal object during it’s active time.

Definition 7 (SRID) A Spatial Reference System Identifier (SRID) is a
unique value used to unambiguously identify projected, unprojected, and local
spatial coordinate system definitions. These coordinate systems are at the
heart of all GIS applications. [24]

2.2 The GTFS Specification

The General Transit Feed Specification (GTFS) is a data format used
to define public transportation schedules and realtime data with associated
geographic information. GTFS started out as a side project of a Google
employee named Chris Harrelson in 2005. Chris was acquainted with IT
managers from the transit agency at Portland, Oregon, who provided Google
CSV exports of the agencies schedule data. That was the beginning of
Google’s ”Transit Trip Planner”, which expanded to other US cities the
following year, and the format used was released as Google Transit Feed

Page 6

Instituto Tecnológico de Buenos Aires - 2020

Specification. The specification became widely used since there was no public
standard for transit timetables and due to its convenience and flexible format.
As a consequence of its wide adoption, the data standard was renamed to
General Transit Feed Specification in 2009.

The GTFS specification has two versions, Static and Realtime, the former
being the most widely used. GTFS-Static is used to predefine trip schedules,
while GTFS-Realtime is a feed of real time data with the positions and
timestamps of the data points within trips and routes.

2.2.1 GTFS-Static

A GTFS-Static feed is composed of a series of text files with a CSV format
that are stored in a ZIP file. Each file determines a specific aspect about
the public transportation schedules, such as stops, routes and trips. [11]
GTFS-Static contains the following files: [12]

• agency.txt
This is a required file. It lists the different transit agencies that will
operate the transport routes. These have an agency identification
number, name, a timezone and contact information, such as email,
website and phone number.

• stops.txt
This is a required file. It lists the stops that will be used on the
scheduled trips. It contains a stop code that identifies the location
for riders, a stop name, latitude and longitude coordinates. There are
several other optional fields, such as whether the stop is accessible to
wheelchair boarding.

• routes.txt
This is also a required file. It lists the routes that are contained in
the public transport schedule. It contains the identification number
of the agency that operates the route, a readable route short name, a
long name and a route type which is a number defined by the GTFS
standard. The number 0 represents a tram, streetcar or light rail, 1
represents a subway or metro, etc. There is a total of 12 different route
types. There are also several other optional fields, such as a route color
for displaying the route graphically, and a route url with a link to a
webpage about that particular route.

• trips.txt
This is a required file. It lists the trips contained in the schedule. The
trips have an identification number, a route identification number and
a service identification number. The service contains a set of dates for
the trips.

Page 7

Instituto Tecnológico de Buenos Aires - 2020

• stop times.txt
This is a required file. It links trips with stops and adds a date and time
with arrival time and departure time fields. It also contains several
optional fields such as pickup and dropoff types (regular pickups, phone
arranged pickups, driver coordinated pickups, etc.)

• calendar.txt and calendar dates.txt
These files are conditionally required, either calendar.txt or calen-
dar dates.txt must exist, both can be present too. calendar.txt
contains a service identification number, and a field for each day of the
week, representing if the service is available that day. It also contains a
start date and an end date for the service. calendar dates.txt adds
service exceptions. These service exceptions can be addition exceptions
or removal exceptions. The fields are a service identification number, a
date for the exception, and the exception type (addition or removal).

• Optional files
There are several optional files, such as fare attributes.txt that in-
cludes trip prices and payment methods, fare rules.txt, shapes.txt
that includes data points that determine the trajectory taken between
stops, frequencies.txt, transfers.txt, pathways.txt, levels.txt,
feed info.txt, translations.txt and attributions.txt.

2.2.2 GTFS-Realtime

GTFS Realtime is defined in a looser manner. A GTFS Realtime feed is
served via the HTTP protocol, and should provide frequent updates, although
there are no constraints on how frequently these updates should be served
nor on the exact manner in which the feed is updated or retrieved. Any
web server can host and serve the data, and any transport protocols can
be used as well. A GTFS Realtime feed can support the following types of
information [7]:

• Trip updates - delays, cancellations, changed routes.

• Service alerts - events affecting a station, route or trip.

• Vehicle positions - information about the vehicles currently in service,
with their locations and other data such as congestion level.

GTFS Realtime has two distinct feed elements, messages and enums.
Messages represent complex types and enums represent a list of fixed
values, these are generally used to communicate certain events. The feed
elements are used when the web server communication method is the Protocol
Buffer, an efficient protocol used to transmit a GTFS Realtime feed. However,
as mentioned before, the communication method for GTFS realtime is not

Page 8

Instituto Tecnológico de Buenos Aires - 2020

strictly defined. For the case of the real time data feed for the city of Buenos
Aires, the API implements the Protocol Buffer and also a JSON format body
within an HTTP response. The API sends nested messages as fields in the
JSON body. Only the messages that are used will be described: [8]

• FeedEntity
This is the message that is sent on all HTTP requests, it provides an
update of an entity in the transit feed. It contains an identification
field, a TripUpdate message, a VehiclePosition message and an
Alert message. However, the Alert message is conditionally required
and not implemented in this case.

• TripUpdate
This message provides an update on the progress of a vehicle along a
trip. It contains a trip descriptor, a vehicle descriptor and fields to
represent the delay and new stop time that is being alerted.

• VehiclePosition
This message provides real time position information of a given vehicle.
It contains a trip descriptor, vehicle descriptor, a position described in
latitude and longitude coordinates, a stop identificator of the current
stop and a timestamp in POSIX time.

2.3 MobilityDB

MobilityDB [18] is a database management system for moving object
geospatial trajectories, such as GPS traces.

Built on top of PostgreSQL and its Geo extension PostGIS; MobilityDB
adds support for temporal and spatio-temporal objects to the open source
Database environment.

The long established research in moving object databases has until now
resulted in research prototypes such as SECONDO [23] and HERMES [15].
MobilityDB is envisioned to become the first open-source, industry-scale
implementation that can be used in real-world applications.

2.3.1 Type System

2.3.1.1 Temporal Types
Temporal types is the MobilityDB solution for handling objects whose

value changes over time. Representing values that evolve in time is essential
in many applications; examples of this include stock prices, temperature and
of course Spatio-Temporal Objects.

MobilityDB provides the following temporal types: tbool, tint, tfloat,
ttext, tgeompoint, and tgeogpoint.

Page 9

Instituto Tecnológico de Buenos Aires - 2020

These temporal types are based, respectively, on the bool, int, float,
and text base types provided by PostgreSQL, and on the geometry and
geography base types provided by PostGIS.

Temporal types are initially constructed from a discrete set of values.
The object represents the evolution of the value during a sequence of time
instants, the values between these instants are interpolated using either a
stepwise or a linear function according to the type.

2.3.1.2 Time Types
All temporal types are based on four time types: the timestamptz type

provided by PostgreSQL and three new types which are period, times-
tampset, and periodset.

The period type is more efficient implementation of the tstzrange type
provided by PostgreSQL. The most relevant differences are its fixed length,
and disallowing empty periods while the tstzrange type is of variable length
and allows any value.

The timestampset is a collection of one or more timestamptz val-
ues whilst the periodset is a non-empty collection of ordered and non-
overlapping, period values.

2.3.1.3 Range Types
Two Range types were also introduced in the system. Namely intrange

and floatrange. These ranges are pairs of upper and lower bounds which
can be interacted with out of the box operators such as < @ (Contained in)
and others.

2.3.2 MobilityDB functions

The type system defines only the building blocks of MobilityDB’s func-
tionality. The MobilityDB documentation [18] goes into great detail on the
length of functionality implemented on the platform. The functions used in
the making of this analysis can be separated in the following categories:

• Functions and Operators for Time Types and Range Types
Perform different operations on Time types and Ranges. Generally
polymorphic functions that receive any type and perform different
calculations. Ex:

1 startTimestamp({timestampset, periodset}): timestamptz

2 endTimestamp({timestampset, periodset}): timestamptz

3 timespan({timestampset, period, periodset}): interval

• Functions and Operators for Temporal Types
Perform different operations on Temporal types. These operations can

Page 10

Instituto Tecnológico de Buenos Aires - 2020

mostly be thought of as applying the traditional operations at each
instant, which yields a temporal value as result. E.g:

1 cumulativeLength(tpoint): tfloatseq

2 speed(tpoint): tfloats

3 nearestApproachDistance({geo, tpoint}, {geo, tpoint}): float

2.3.3 Spatio-Temporal Object Implementation

Figure 1: Mobility DB Trajectory phases
Original (top), Interpolation (middle), Normalization (bottom)

A Spatio-Temporal Object is generally built from a series of discrete times-
tamped location points. However moving object’s trajectories are continous;
so in order to properly query the state of the object MobilityDB interpolates
the points with a linear function, generating a continuous approximation.
This interpolation allows estimative queries for the state of the object at any
instant in the reported interval.

The process of trajectory creation also allows for redundant data points
to be identified and removed from the dataset. This process is called Nor-
malization and in practice significantly reduces the trajectory’s storage size.

Page 11

Instituto Tecnológico de Buenos Aires - 2020

MobilityDB provides two different Spatio-Temporal Object types, Tempo-
ral Geometry Point and Temporal Geography Point, these correspond to
PostGIS’ data types. The difference between the two is the reference system,
geography points use a geodesic reference system and offset accuracy for
complexity whilst geometry points use a cartesian reference system and
allow calculation of speed and other distance related metrics.

Once the object’s evolution is stored in the system, MobilityDB allows
multiple functions to access and manage its values. Some of these functions
such as Speed and Direction return temporal values themselves allowing the
user to take full advantage of the database’s type system.

2.3.4 Example Queries

1 -- Temporal addition

2 SELECT tint '[1@2001-01-01, 1@2001-01-03)' +

3 tint '[2@2001-01-02, 2@2001-01-05)';

4 --"[3@2001-01-02, 3@2001-01-03)"

5 --Temporal intersects

6 SELECT tintersects(tgeompoint '[Point(0 1)@2001-01-01,

7 Point(3 1)@2001-01-04)',

8 geometry 'Polygon((1 0,1 2,2 2,2 0,1 0))');

9 --"{[f@2001-01-01, t@2001-01-02, t@2001-01-03],

10 -- (f@2001-01-03, f@2001-01-04]}"

The query above shows how MobilityDB’s temporal types work. The first
SELECT statement constructs two tints and adds them. The resulting
value is a tint as well.

The second example illustrates how different Temporal types can work
together. In this case when querying tintersects for a temporal point and
a given geometry the resulting value is a tbool.

The last query can be thought of as the times a car entered a static
region. The car is the spatio temporal point, the region is described as a
polygon, and the result is a list containing all the times a car was in or out
of the region.

1 CREATE TABLE Trips(CarId integer, TripId integer,

2 Trip tgeompoint);

3 INSERT INTO Trips VALUES

4 (10, 1, tgeompoint '{[Point(0 0)@2012-01-01 08:00:00,

5 Point(2 0)@2012-01-01 08:10:00, Point(2 1)@2012-01-01

6 08:15:00)}'),

7 (20, 1, tgeompoint '{[Point(0 0)@2012-01-01 08:05:00,

8 Point(1 1)@2012-01-01 08:10:00, Point(3 3)@2012-01-01

9 08:20:00)}');

10 -- Value at a given timestamp

Page 12

Instituto Tecnológico de Buenos Aires - 2020

11 SELECT CarId, ST_AsText(valueAtTimestamp(Trip, timestamptz '2012-01-01 08:10:00'))

12 FROM Trips;

13 -- 10;"POINT(2 0)"

14 -- 20;"POINT(1 1)"

The script above illustrates a more practical example where values are stored
in a table. The SELECT statement queries the value of the cars at a specific
timestamp resulting in a point.

2.4 The SECONDO Moving Object Database

Among the many attempts at producing Moving Object Databases
SECONDO is one of the few that is still being maintained to this day [17].
SECONDO is an extensible database system supporting non-standard ap-
plications. SECONDO provides an out of the box GUI which supports
spatio-temporal data allowing stress-free visualization.

The Secondo system is extensible by algebra modules, using a well defined
interface. New data models and data structures together with their operations
are integrated into the system in this way. Some modules, such as the Spatial
and Temporal algebras are included out of the box.

Figure 2: Secondo architecture

Though SECONDO’s capabilities are virtually limitless, since it can
always be expanded by new algebraic modules, it is mostly used for spatio-
temporal or moving object analysis.

2.4.1 SECONDO queries

SECONDO queries can be formulated in two different ways: directly
against SECONDO ’s executable language or via a SQL-like language which

Page 13

Instituto Tecnológico de Buenos Aires - 2020

is translated by the query planner; however the latter is, in some cases, sub
optimal and presents restrictions.

The following examples show how to query for streets whose name starts
with A for both types of languages.

1 # Executable language

2 query streets feed filter[.Name starts "A"] project[Name] consume;

3 # SQL-like language

4 select Name from streets where [Name starts "A"]

2.4.2 Parallel SECONDO

SECONDO ’s capabilities are restricted by it’s underlying hardware re-
sources since the installation is done on a single computer. Parallel SEC-
ONDO intends to scale up the SECONDO from one computer to a cluster
the workflow is controlled by the popular processing platform Hadoop.

2.5 MobilityDB vs SECONDO

2.5.1 Language Style

As mentioned, SECONDO queries can be formulated in a SQL-like format,
or directly on SECONDO ’s executable language. In this regard MobilityDB
provides the advantage of being built on top PostgreSQL making the learning
curve much easier for users already familiarized with SQL Databases.

2.5.2 BerlinMOD comparison

BerlinMOD is a benchmark for spatio-temporal databases. It is intended
as a tool for comparing the performance of different implementations.

BerlinMOD primarily measures the performance on queries employing
moving point data. Moving point data are sampled from simulated cars
driving in the street network of the German capital Berlin in a representative
way.

MobilityDB has been compared with SECONDO using this benchmark.
In summary, MobilityDB came faster in 63% of the queries. The total
run time of all queries in MobilityDB required 13% of the time required in
SECONDO. [19] [20]

2.5.3 Decentralized Queries

With the addition of Parallel SECONDO queries on this database can be
scaled horizontally as far nodes can be added to the cluster. In the case of
MobilityDB clusterization is both benefited and limited by the capabilities
of PostgreSQL and PostGIS.

Page 14

Instituto Tecnológico de Buenos Aires - 2020

2.5.4 Visualize query results

SECONDO can leverage its out-of-the-box GUI to visualize query results
and input data. On the other hand, MobilityDB lacks this feature out of the
box and has to be integrated with QGIS or other visualization applications.

2.6 Map Matching

Map Matching is the process of equating a series of discrete locations
to a logical route in a network. Typically used to reduce inaccuracies from
GPS signals, map matching algorithms take serial point locations and relate
them to streets on a map.

Figure 3: Map Matching

2.6.1 Map Matching algorithms

Map Matching algorithms can be separated into two categories

• Real-Time Matching
Real time map matching compromises accuracy for increased speed
and processing. Used to correct routes during the location sampling.

• Offline Matching
Offline map matching compromises speed for increased accuracy. Used
once all data is recorded, offline map matching can theoretically tra-
verse the entire road network looking for the perfect match. However

Page 15

Instituto Tecnológico de Buenos Aires - 2020

in practice limits have to be established to reduce computational com-
plexity.

2.6.2 Barefoot

One of the most broadly used map matching implementations is provided
by bmwcarit by name of Barefoot. [1]
Barefoot is a Java map matching library with state-of-the-art online and
offline map matching that can be used stand-alone or in the cloud.

Page 16

Instituto Tecnológico de Buenos Aires - 2020

3 Case Study

3.1 Introduction

In order to validate the effectiveness of MobilityDB in consuming GTFS
data, studying the transport system of Buenos Aires was considered. The
studied area includes the City of Buenos Aires and its outskirts; collectively
known as the Metropolitan Area of Buenos Aires or AMBA.

The AMBA transport system consists of three main branches. The
subway system, contained in the city itself, the metropolitan railway system,
which connects Buenos Aires with other cities of the region such as Zarate
and La Plata and finally the Bus system, which is an extremely complex
system of hundreds of municipal and provincial bus lines from all across the
urban area.

Figure 4: Buenos Aires Subway Network

Page 17

Instituto Tecnológico de Buenos Aires - 2020

Figure 5: Metropolitan Railway Network

Chief amongst the multiple providers of information on the AMBA
transport system is the City of Buenos Aires open data site. [2] This portal
supplies both the itineraries for all branches of the AMBA transport system
as well as real time information on the vehicles themselves.

Having access to this information allowed the leverage of MobilityDB ’s
capabilities to execute complex queries which would provide data on: Average
speed depending on the hour or the day of the week, transports whose
trajectory passes close to a point of interest, average delay for each transport
and finally transport delay heat maps.

Page 18

Instituto Tecnológico de Buenos Aires - 2020

The following section will explore how the transport system data was
obtained, the different systems used to import this data and finally the
results obtained.

3.2 Desired Schema

In order to import spatio-temporal data into MobilityDB, it is necessary
to be able to represent the given material with native MobilityDB spatial-
temporal types. The desired output of the import process is to have an SQL
table named trips mdb with the following fields:

• trip id
An identification number that describes the particular trip.

• vehicle id
An identification number that describes the particular vehicle in service.

• startdate
A date field that represents the starting date of the trip.

• starttime
A time field that represents the starting time of the trip.

• trip
This is the field that contains the time and location data of all of the
trip. This is achieved by using MobilityDB’s tgeompoint data type.

• traj
This field represents the trajectory of the trip with only spatial data,
no time data is included. This field uses the geometry data type
included in PostGIS.

trip contains all of the trips spatial-temporal data, and it is the field
used in the majority of the queries, since all of the MobilityDB convenience
functions use these types. traj will be used mainly for representing the
trajectories of the trips graphically, since QGIS is able to graph geometry
types without any additional configuration or processing. It is worth men-
tioning that tgeompoints are not a discrete set of points, these simulate
continuous spatial-temporal data, hence their utility.

3.3 GTFS Static

3.3.1 Obtaining the Data

GTFS Static data sets were obtained for trains [14], subways [13] and
buses [10]. The train data set spans from February to April 2020 and the
subways dataset spans from January 2014 to October 2019. The latest dataset

Page 19

Instituto Tecnológico de Buenos Aires - 2020

on buses that can be found on the government website is from August 2019,
so a more recent dataset, from OpenMobilityData that span from 20 April
2020 to 20 October 2020, was used.

3.3.2 Data Structure

3.3.2.1 Bus System
The downloaded transit feeds for the Buenos Aires Bus system includes

the following files: agency.txt, calendar dates.txt, routes.txt,
shapes.txt, stop times.txt, stops.txt, trips txt

3.3.2.2 Subway and Railway System
Regarding the data structure for the railway and subway system, the files

found were similar. However, one remarkable difference is the inclusion of
the file calendar.txt. This is a GTFS supported alternative for providing
recurring information in a more succint manner.

3.3.2.3 Bus Interpolation Problem
The Buenos Aires bus system data presented an abnormality which caused

issues during interpolation. For some lines where two distinct stops were
very close to each other the feed specified the arrival time to be the same for
both stops.

Figure 6: Bus System Abnormality

3.3.3 Data Pre-processing and Importing

The GTFS Static Pipeline was separated into two steps; Pre-Processing
and Data Importing.

3.3.3.1 Pre-Processing
The Pre-Processing Pipeline includes two scripts:

• Data Pruner
Python script responsible for removing unused columns from GTFS
data.

• Data Wrangler
Go script responsible for finding abnormalities in stop arrival times
and modifying values to allow interpolation.

Page 20

Instituto Tecnológico de Buenos Aires - 2020

3.3.3.2 Data Importing
Once the data is preprocessed the Data Importing phase takes place. This

step includes three scripts:

• GTFS Importer
SQL script responsible for loading preprocessed data into Auxiliary
tables.

• Dates Importer
SQL script responsible for loading service dates into auxiliary tables
according to the availabiliy of calendar dates.txt, calendar.txt or both
files.

• MDB Importer
SQL script responsible for populating the trips mdb table. Takes care
of generating the geometry of every trips route, calculating arrival
times to every trips stops and finally generating the tgeompoint from
the GTFS information.

All agencies reported in the transit feed use UTC-3 Timezone, so timestamps
were loaded with America/Argentina/BuenosAires timezone.

Figure 7: GTFS-Static importing pipeline

Page 21

Instituto Tecnológico de Buenos Aires - 2020

3.4 GTFS Realtime

3.4.1 Obtaining the Data

Upon some analysis it was discovered that the Transportation Ministry
of Buenos Aires provides a GTFS Real Time API to allow users to track the
state of the public transportation vehicles [9].

The API provides endpoints to request the status of both Trains and
Buses of the city and its outskirts. Unfortunately, at the moment of writing
there is no endpoint to query Subway lines in real time.

According to the API documentation the endpoints are updated at an
interval of thirty seconds, they support both Protocol Buffers and JSON
responses.

A scraper, denoted BA Catcher, that polls the transportation system at
the update interval, was developed. To simplify development the scraper
was run against the JSON endpoint starting August 18th and ending August
25th.

During the week of polling the Train endpoint did not return any values,
so data extraction was limited to the Bus system.

3.4.1.1 BA Catcher Architecture
The Architecture for the BA Catcher is fairly simple. All resources can be

found in the GitHub Repository. [3]

Figure 8: BA Catcher Architecture Diagram

• BA Transport API
Transport API provided by the Buenos Aires Transport Ministry.

• Polling Service
Service responsible for setting up the recurring JSON requests. Parsing
the response and validating the values.

Page 22

Instituto Tecnológico de Buenos Aires - 2020

• Position DAO
Data Abstraction. Responsible for persisting values to the database
and assuring no duplicate values are persisted.

• Position Databases
PostgresSQL database. Contains a single table Positions where all
relevant information of the timestamped locations is persisted.

3.4.1.2 Checking the results
Taking advantage of the range types introduced in MobilityDB simple

queries were executed to display a barchart which allowed the visualization
of the number of timestamped locations reported for each trip.

It was noticed that for a large proportion of the trips less than 10 locations
had been reported.

Figure 9: Timestamped location frequency Barchart

Page 23

Instituto Tecnológico de Buenos Aires - 2020

1 WITH buckets (bucketNo, bucketRange) AS (

2 SELECT 1, intrange '[0, 2)' UNION

3 SELECT 2, intrange '[2, 10)' UNION

4 SELECT 3, intrange '[10, 50)' UNION

5 SELECT 4, intrange '[100, 200)' UNION

6 SELECT 5, intrange '[200, 500)' UNION

7 SELECT 6, intrange '[500, 1000)' UNION

8 SELECT 7, intrange '[1000, 100000)'),

9 vals (trip_id, amount) AS (

10 SELECT trip_id, count(trip_id) AS amount

11 FROM positions

12 GROUP BY trip_id

13),

14 valswithBucket (bucketNo, bucketRange, trip_id) AS (

15 SELECT bucketNo, bucketRange, trip_id

16 FROM buckets LEFT OUTER JOIN vals ON amount::int <@ bucketRange

17),

18 histogram (bucketNo, bucketRange, freq) AS (

19 SELECT bucketNo, bucketRange, count(*) AS freq

20 FROM valswithBucket

21 GROUP BY bucketNo, bucketRange

22 ORDER BY bucketNo, bucketRange

23)

24 SELECT bucketNo, bucketRange, freq,

25 repeat('�', (freq::float / max(freq) OVER () * 30)::int) AS bar

26 FROM histogram;

Figure 10: Timestamped location frequency Barchart Query

The query above makes use of MobilityDB’s range types.
The query begins by defining a set of buckets, the bucket bounds were

picked after executing some exploratory queries on the data. For different
data sets other buckets may provide better results.

An intermediary table is populated which stores the trip id followed by
the amount of appearances in the data set. Taking advantage of Mobili-
tyDB’s operations on ranges it is possible to join the previous table with it’s
respective bucket, according to the amount value.

At this point the final intermediary is populated. This table stores the
bucket information alongside the number of trip id’s with the corresponding
amount.

The final SELECT statement outputs this information to the terminal
alongside a simple ASCII bar chart to improve readability.

Page 24

Instituto Tecnológico de Buenos Aires - 2020

3.4.2 Data Structure

The fields stored from the HTTP requests for obtaining the real time
data are the following:

• trip id
The trip identificator number that is used to reference the trip that
the moving object is performing. This trip identificator coincides with
the id used in the static data.

• vehicle id
An identificator number used to reference the particular vehicle in
service.

• instant
A timestamp for the data being sent. This timestamp is in POSIX
time.

• latitude
The latitude coordinate of the vehicle at the informed instant in the
Universal Transverse Mercator coordinate system. [25]

• longitude
The longitude coordinate of the vehicle at the informed instant in the
Universal Transverse Mercator coordinate system. [25]

• startdate
The date in which the trip started, in YYYMMDD format.

• starttime
The time in which the trip started, in 24h format.

• direction id
Indicates the direction of travel for a trip, can be a 0 or 1, e.g. outbound
or inbound.

There were several rows which had positive latitude and longitude values,
which are not coherent with the geographical location of the City of Buenos
Aires. These values had coordinates for points somewhere in the Atlantic
Ocean, clearly erroneous. When these points were plotted with the same
modulus, but negative values, they matched the current trip.

3.4.3 Data Pre-processing and Importing

The following diagram illustrates the pipeline created to import the
GTFS Realtime data:

Page 25

Instituto Tecnológico de Buenos Aires - 2020

Figure 11: GTFS-Realtime importing pipeline

The BA Catcher component has been previously explained. BA Ex-
porter.sql uses the data that BA Catcher stored and creates a CSV file
that used for pre-processing. Coordinate Corrector.py fixes the positive
coordinate values by making them negative. BA Importer.sql creates a
table called positions with the direct import of the fields mentioned in
section 3.4.2. With this table, the script creates points of geometry type
using the ST MakePoint() function provided by PostGIS, the SRID of the
geometry is set to 4326 (the standard longitude and latitude coordinates on

Page 26

Instituto Tecnológico de Buenos Aires - 2020

the Earths surface), since that is the format the data is obtained in. Then,
the table described in section 3.2 is created, and the data from the table
positions is imported. The tgeompoints are created with the following
line of code:

1 tgeompointseq(array_agg(

2 tgeompointinst(

3 point,

4 (to_timestamp(instant) at time zone

5 'America/Argentina/Buenos_Aires')) ORDER BY instant

6)

7)

Figure 12: Converting a series of timestamps and points to tgeompoints

tgeompointinst() creates a tgeompoint with a single point at a certain
instant, and by aggregating these with array agg(), they can be passed to
tgeompointseq() to create a tgeompoint that represents the whole trip,
to be added to the trips mdb table. After that, the SRID is converted to
5345 (the standard for defining geodesic coordinates within the Argentinean
territory), and the additional field traj is filled by using the MobilityDB
function trajectory(). This function returns the PostGIS trajectory that a
tgeompoint contains.

3.5 Data Post-Processing

3.5.1 SRID modifications

Both Static and Real Time values were loaded using SRID 4326. This
allowed the Latitude and Longitude values provided to be used to immediately
identify the desired point on the map. SRID 4326 is convenient in that it
provides great accuracy in a geodesic system such as the planet, however to
be able to calculate distance, speed and other metrics a different reference
system must be used.

The final decision was to utilize SRID 5345 which is a Cartesian system
that encompasses all of Argentina and its surroundings. This reference system
is maintained by the IGN which is the principal authority on geography
in the country. [16] To actually make the reference system change a utility
function provided by MobilityDB was executed once the data was already
loaded.

Page 27

Instituto Tecnológico de Buenos Aires - 2020

Figure 13: SRID 5345

3.5.2 Lines with low sampling rate

From the observation in section 3.4.1.2 it was deemed necessary to
remove lines which did not have enough information. A minimum of eleven
real time, timestamped locations per bus line was established to ensure
the trajectory provided enough value. All bus lines that did not pass this
benchmark were removed.

3.5.3 Bus System Intersection

To be able to accurately compare the Real time and static Bus System
Feeds it was deemed necessary to ensure that the compared bus lines were
the same. In order to do so all bus lines not present in the real time feed
were removed from the static feed, and all bus lines not present in the static
feed were removed from the real time feed. Effectively only the intersection
of both feeds was kept.

3.6 Map Matching

3.6.1 Experience with Barefoot

To improve the results the use offline map matching was attempted on
the sampled data. bmw-carit/barefoot was set up and brought some issues.

Page 28

Instituto Tecnológico de Buenos Aires - 2020

• The offline map matching provided by barefoot can only correct one
route per thread. At the scale of thousands of trips like in the city of
Buenos Aires this restriction demands the development of a complex
parallel pipeline which would handle the workload.

• Even though the BA Transport API documentation states that the
response is updated every thirty seconds this statement does not seem
to be true for every line.

In practice the average interval between two adjacent samples for a
given line was of 130 seconds. This alone would not be as worrying
were it not for the fact that the interval variance is very high. In the
worst cases the interval can be as long as 300 to 600 seconds.

As discussed above, as uncertainty increases so does the temporal complexity
of the matching algorithm. In this specific case were both the uncertainty
(given by the interval) and the scale (given by the size of the transport
network) were very high; the decision was made to explore alternative
solutions for the map matching problem.

3.6.2 Proof Of Concept Map Matching Algorithm

Though the realtime data suffered from inaccuracies due to both gps
signal errors and sampling frequency; the static data had none of these
problems.
The static input data was provided already map-matched. It was therefore
noticed that the problem of matching the realtime trajectories to the physical
route network was equal to matching the realtime trajectories to the static
ones.
In order to test this hypothesis, an example of a trajectory that clearly
displays the problem was found. The bus line 152 is a great example,
because during its trajectory it goes by the presidential house, along a large
roundabout which, with the current real time frequency, MobilityDB will be
unable to create an adequate route for:

Page 29

Instituto Tecnológico de Buenos Aires - 2020

Figure 14: Bus Line 152, static route (blue), real time data points (red),
generated route (pink).

The trajectory generated from the data points crosses the park through
the middle, because the sampling frequency is not high enough to create a
route that matches the static one. This example was deemed good enough
to attempt a proof of concept algorithm of Manual Map Matching.

The following code was developed:

Page 30

Instituto Tecnológico de Buenos Aires - 2020

1 select tgeompointseq(array_agg(

2 tgeompointinst(

3 (dump).geom,

4 startTimestamp(

5 nearestApproachInstant(transform(trip, 4326),

6 ST_SetSRID((dump).geom,4326)))

7)

8)) from (

9 select

10 ST_LineSubstring(

11 ST_SetSRID(traj, 4326),

12 ST_LineLocatePoint(

13 ST_SetSRID(traj, 4326),

14 ST_ClosestPoint(ST_SetSRID(traj,4326),

15 ST_SetSRID(

16 ST_MakePoint('-58.3693348', '-34.6093502'), 4326)

17)

18),

19 ST_LineLocatePoint(

20 ST_SetSRID(traj, 4326),

21 ST_ClosestPoint(ST_SetSRID(traj,4326),

22 ST_SetSRID(

23 ST_MakePoint('-58.369340001', '-34.606379996'), 4326)

24)

25)

26) as line,

27 ST_DumpPoints(ST_LineSubstring(

28 ST_SetSRID(traj, 4326),

29 ST_LineLocatePoint(

30 ST_SetSRID(traj, 4326),

31 ST_ClosestPoint(ST_SetSRID(traj,4326),

32 ST_SetSRID(

33 ST_MakePoint('-58.3693348', '-34.6093502'), 4326)

34)

35),

36 ST_LineLocatePoint(

37 ST_SetSRID(traj, 4326),

38 ST_ClosestPoint(ST_SetSRID(traj,4326),

39 ST_SetSRID(

40 ST_MakePoint('-58.369340001', '-34.606379996'), 4326)

41))

42)) as dump, trip

43 from trips_mdb_static

44 where starttime::DATE = '2020-08-25' and trip_id = '10000-1') as subquery;

Page 31

Instituto Tecnológico de Buenos Aires - 2020

The script will be explained in parts, first the subquery, from line 9
onwards. The subquery returns the line of the static trajectory that is
contained between the two points closest to the red points, which are the
real points obtained with the API. This trajectory will be referred as line.
It also returns dump, which is an array of points that are contained in the
previously mentioned trajectory. The where conditions (line 45) specify the
exact trip that is shown on figure 14.

To obtain line and dump, ST ClosestPoint was utilized with the tra-
jectory and the red point shown on the figure. This returns the closest point to
the red one, within the trajectory. With the function ST LineLocatePoint
the percentage of the trajectory in which the mentioned point is found is
obtained. By calling ST LineSubstring with both obtained points, and
the trajectory, the trajectory contained within both datapoints is retrieved.
With line and dump, the MobilityDB function nearestApproachInstant
is used to generate the tgeompoint, and thus obtain the map matched
route:

Figure 15: Corrected trajectory with map matching algorithm

Page 32

Instituto Tecnológico de Buenos Aires - 2020

The pink route can be observed to respect the original route spatially,
and the time values associated to the new points can be checked too to
ensure reasonable results:

Figure 16: Time values associated to the map matched route

In conclusion the results obtained with the Manual Map Matching solution
were deemed reasonably good. In this particular case the method was
better than traditional map matching because it takes advantage of the
expected route data. Utilizing MobilityDB functions, a custom map matching
algorithm was produced; the algorithm matches error-prone discrete points
to a known route in the system. However due to time constraints the results
which follow are not map matched.

3.7 Analysis and Results

In the following section, the imported data will be visualized with various
types of graphs and some samples of spatio temporal queries will be shown,
with the objective of understanding the imported data sets and showcasing the
capabilities of MobilityDB. First, the tools used to create the visualizations
will be listed and explained, then visualizations for GTFS-Static data will be
shown, followed by GTFS-Realtime visualizations and lastly, visualizations
that use both datasets with some observations about the data displayed.

3.7.1 Tools

To create the following results Grafana was used, a free software with the
Apache 2.0 license [6]. Grafana is a web application that is able to create
dashboards with data from multiple databases. For the visualizations that
contain maps, QGIS [22] was used, a very useful tool for geolocation data,
because of its seamless integration with PostGIS data types. The map used
was provided by OpenStreetMap [21].

Page 33

Instituto Tecnológico de Buenos Aires - 2020

3.7.2 GTFS-Static

3.7.2.1 Subways
The following visualization shows the imported GTFS Static data for the

subway lines. It shows the stops overlapped with the trajectory created from
the tgeompoints:

Figure 17: Subway stops overlapped with trajectories

3.7.2.2 Railways
The following visualization show the imported GTFS Static data for

Railway and Subway Lines.

Figure 18: BA Railway System Stations

Page 34

Instituto Tecnológico de Buenos Aires - 2020

Figure 19: BA Subway (red) and Railway (blue) Systems

3.7.2.3 Buses
In the following Figure a sample of the the trajectories for the real time

Bus feed are visualized.

Figure 20: GTFS Static bus lines

Page 35

Instituto Tecnológico de Buenos Aires - 2020

3.7.2.4 Closeness to a Point of Interest
Taking advantage of MobilityDB utility functions it is possible to visualize

the trajectories for all Buses that pass close to a Point of Interest. In this
case trajectories and identifiers for buses that pass less than 200 meters away
from Teatro Colón were queried.

Figure 21: Bus Trajectories close to Teatro Colón

Figure 22: ID’s of Bus lines that pass less than 200m of Teatro Colón

Page 36

Instituto Tecnológico de Buenos Aires - 2020

1 -- Lines that pass less than 200 m of Teatro Colon

2 WITH trip_distances as (

3 SELECT bl.route_short_name as line,

4 ST_Length(

5 shortestLine(

6 trip,

7 ST_SetSRID(

8 ST_MakePoint(4199468.71, 6145133.6),5345))

9) as distance

10 FROM trips_mdb as st join buslines as bl on st.trip_id = bl.trip_id

11 WHERE ST_Length(

12 shortestLine(

13 trip, ST_SetSRID(ST_MakePoint(4199468.71, 6145133.6),5345))

14) < 200

15)

16 SELECT NOW() AS "time", line AS metric, AVG(distance) as value

17 FROM trip_distances

18 GROUP BY line

19 ORDER BY value ASC;

Figure 23: Bus Trajectories close to Teatro Colón Query

The core of the query is in the definition of the auxiliary table
trip distances in which the bus’ line and the shortest distance to the point
of interest are stored.

In order to calculate the latter value MobilityDB functions are used, in
particular shortestLine which takes in a tgeompoint and a geompoint
and provides the shortest line which connects the two figures. Online web
tools were used to find the coordinates of the Point of Interest (in SRID
5345). These coordinates were passed in the function ST MakePoint.

With the line built PostGIS’ length function can be called to retrieve
the desired metric. The final SELECT statement simply provides the data
in a format readable by Grafana.

Since a single bus line may be associated to many trip ids the final
output averages the minimum distance from all trips for the given bus line.

3.7.3 GTFS-Realtime

3.7.3.1 Buses
The following visualization shows a sample of all the reported positions of

buses registered in the week of 18 August - 25 August:

Page 37

Instituto Tecnológico de Buenos Aires - 2020

Figure 24: Bus Line 152A number of trips comparison

3.7.4 GTFS Static and Realtime comparison

By identifying the individual bus lines with the trip id it is possible to
query in both real time and static feeds for the different trips the particular
bus line has done.

Figure 25: GTFS-Static importing pipeline

The results show that in reality the busline has missed two of the trips it
was expected to do during the week.

By applying this same technique the trajectory of the same bus line in
both real time and static feeds can be visualized in QGis and confirm their
similarity.

Page 38

Instituto Tecnológico de Buenos Aires - 2020

Figure 26: Bus Line 152A trajectory comparison

In the following code, the average speed of the vehicles is calculated
grouped by starting hour, and grouped by starting day:

Page 39

Instituto Tecnológico de Buenos Aires - 2020

1 -- Average speed by starting hour (ST)

2 SELECT AVG(twavg(speed(Trip))) as static,

3 date_trunc('hour',startTimestamp(Trip)) at time zone 'GMT-3' as time

4 FROM Trips_mdb

5 group by time

6 order by time;

7

8 --Average speed by starting hour (RT)

9 SELECT AVG(twavg(speed(Trip))) as realtime,

10 date_trunc('hour', starttimefull) at time zone

11 'America/Argentina/Buenos_Aires' as time

12 FROM Trips_mdbrt

13 WHERE starttimefull is not null

14 group by time

15 order by time;

16

17 -- Average speed by starting day (ST)

18 SELECT AVG(twavg(speed(Trip))) as static,

19 date_trunc('day',startTimestamp(Trip)) at time zone 'GMT-3' as time

20 FROM Trips_mdb

21 group by time

22 order by time;

23

24 --Average speed by starting day (RT)

25 SELECT AVG(twavg(speed(Trip))) as realtime,

26 date_trunc('day', starttimefull) at time zone

27 'America/Argentina/Buenos_Aires' as time

28 FROM Trips_mdbrt

29 WHERE starttimefull is not null

30 group by time

31 order by time;

Figure 27: Code to calculate average speed grouped by hour and date

With the trip field as a tgeompoint, the MobilityDB function twavg()
can be used to calculate the average speed of a trip. twavg() receives a
list of numbers with a temporal value and calculates the time-weighted
average of these numbers. By using another MobilityDB function, speed(),
in conjunction with twavg() the average speed of various trips is obtained.

Page 40

Instituto Tecnológico de Buenos Aires - 2020

Figure 28: Average speed grouped by hour and date comparison

The main takeaway is that the buses are moving considerably faster than
what the itinerary expects them to. It also looks like the itinerary does not
take into account the traffic congestion changes throughout the day, while in
the real time data obtained, Maximums in average speed can be observed at
midnight every day. The average speed of buses oscillates between 5m/s and
7.5m/s (18km/h - 27km/h).

When grouped by day, in both Real time and itinerary data the average
speed rises on weekends, and is constant on weekdays. This is expected, since
there are less commuters on weekends to create traffic jams and congestion
in the streets.

Next, the average delays, grouped by bus lines, is calculated:

1 -- Average delay by line

2 SELECT bl.route_short_name AS BusLine,

3 AVG(EXTRACT(EPOCH FROM timespan(rt.trip))/60

4 - EXTRACT(EPOCH FROM timespan(st.trip))/60) as Delay

5 FROM trips_mdb as rt

6 join trips_mdb_static as st on rt.trip_id = st.trip_id

7 join buslines as bl on rt.trip_id = bl.trip_id

8 GROUP BY route_short_name

9 ORDER BY value DESC LIMIT 25;

Figure 29: Code to calculate average delay grouped by bus line

Page 41

Instituto Tecnológico de Buenos Aires - 2020

Figure 30: Average delay by bus line

MobilityDB’s function timespan allows querying the duration of the
trip, after that the query above uses pure PostgreSQL syntax to extract
seconds from it. By calculating the difference between the durations of both
tgeompoints it is possible to retrieve the delay in completing the whole trip. It
can be observed that only two lines have delays with respect to the itinerary.
Even though this data is surprising, it is coherent with the speed data in the
previous section. These results are expressed in minutes.

3.7.4.1 Bus lines Heatmap
With the real time and static tgeompoints created the trip id was used to

find both the theoretical and real trajectories of every bus in the system.
Taking advantage of MobilityDB’s functions to find regions of ’closeness’

between spatio-temporal objects a delay heatmap for every bus in the system
was built.

Segments of the route where both the realtime and static buses are close
to each other are painted green, as the theoretical and real buses move away
from each other the segment changes color towards red.

Page 42

Instituto Tecnológico de Buenos Aires - 2020

1 -- Segments where realtime was close to static.

2 -- Tolerance 100m

3 DROP TABLE heatmap1;

4 CREATE TABLE heatmap1 (

5 trip_id text,

6 seg_geom geometry

7);

8 INSERT INTO heatmap1(

9 trip_id,

10 seg_geom)

11 SELECT ST.trip_id,

12 getvalues(

13 atPeriodSet(

14 ST.Trip, getTime(atValue(tdwithin(ST.Trip, RT.Trip, 100), TRUE))

15)

16)

17 FROM trips_mdb ST,

18 trips_mdbrt RT

19 WHERE ST.trip_id = RT.trip_id

20 AND ST.Trip && expandSpatial(RT.Trip, 100)

21 AND atPeriodSet(ST.Trip, getTime(atValue(tdwithin(ST.Trip, RT.Trip, 100), TRUE)))

22 IS NOT NULL

23 ORDER BY ST.trip_id;

24

25 -- Segments where realtime was close to static.

26 -- Tolerance 50m

27 DROP TABLE heatmap2;

28 CREATE TABLE heatmap2 (

29 trip_id text,

30 seg_geom geometry

31);

32 INSERT INTO heatmap2(

33 trip_id,

34 seg_geom)

35 SELECT ST.trip_id,

36 getvalues(

37 atPeriodSet(

38 ST.Trip, getTime(atValue(tdwithin(ST.Trip, RT.Trip, 50), TRUE))

39)

40)

41 FROM trips_mdb ST,

42 trips_mdbrt RT

43 WHERE ST.trip_id = RT.trip_id

44 AND ST.Trip && expandSpatial(RT.Trip, 50)

45 AND atPeriodSet(ST.Trip, getTime(atValue(tdwithin(ST.Trip, RT.Trip, 50), TRUE)))

46 IS NOT NULL

47 ORDER BY ST.trip_id;

48 .

49 .

50 .

Figure 31: HeatMap Calculation

Page 43

Instituto Tecnológico de Buenos Aires - 2020

The extract above show the queries for definition and population of
the heatmap tables. Using MobilityDB syntax the segments for which the
realtime and static buses were near each other up to a given tolerance were
selected.

The function tdwithin generates a continuous boolean temporal type
which has value TRUE when the temporal points are within a given distance
from each other. Combining this with the atPeriodSet function it is possible
to discard all segments from the tgeompoint where the trips are farther away
than the given tolerance.

The WHERE clause allows improvement of the performance of the
query by taking advantage of the topological operator && (contains) which
can be indexed.

Five tables were created each containg the trip segments for differing
degrees of tolerance. Once visualized in an application such as QGIS the
stepped-tolerance creates a heatmap like visualization. In reality each de-
crease in tolerance creates an ever-decreasing subset of the previous table.

Figure 32: Bus Line Heatmap Line 271P

Page 44

Instituto Tecnológico de Buenos Aires - 2020

Figure 33: Bus Line Heatmap Line 80B

Figure 34: Bus Line Heatmap Line 152A

3.7.4.2 SARS-CoV-2 Lockdown Impact
Many visualizations confirm a significant difference in the location of the

real bus when compared to its static itinerary. These differences are to be
expected by any person who uses public transport in their daily life.

Page 45

Instituto Tecnológico de Buenos Aires - 2020

However the interesting observation is that these differences are not
caused due to a delay but rather, in almost all cases, are due to a significant
advance in the real bus with respect to its itinerary.

In any other year this observation would most likely lead one to conclude
that the data is erroneous. However due to the extremely unusual events that
have taken place in 2020 it is believed that the root cause for this observation
is different.

The sampled data was taken during August in Argentina when the City
of Buenos Aires and its outskirts were going through their fifth month in
lockdown due to the effects of the SARS-CoV-2 Pandemic. Public transport
was not stopped; however frequencies were reduced and there was strict
restrictions on its usage. People were allowed to circulate independently only
with a government emitted authorization.

Many studies have already been analyzing the effects of the lockdown on
traffic and circulation. Amongst them those given by the Google Mobility
Report.

Figure 35: Google Mobility Report Buenos Aires 25-Aug-2020

The root cause for the average increase in speed for bus lines throughout
the sampled interval is believed to be best explained by the reduction in
circulation and public transport usage. It will be very interesting to analyze
the evolution of these metrics as the lockdown fizzles down and normal life
begins again.

Be it on its effect on transit, retail, workplace or park usage, there is no
doubt that the effects of this gargantuan lockdown will be analyzed for many
years to come.

4 Conclusions

In this work the GTFS standard was discussed in-depth and the whole
process of importing the data into MobilityDB was shown, from obtaining
the dataset, to the structure of the data, pre-processing, loading it onto
MobilityDB and post-processing to amend data errors and to format it in
the most convenient way. The process that took place cannot be generalized
to the importing of any GTFS dataset into MobilityDB because of the sheer
breadth of different possibilities of formats that the GTFS standard allows;

Page 46

Instituto Tecnológico de Buenos Aires - 2020

however, a lot can be learned from this particular process used to load the
Buenos Aires dataset. Many of the problems that were encountered in this
work could very well be shared with the importing of another GTFS dataset
onto MobilityDB and many of the solutions implemented can be re-used.
The queries displayed in the analysis section of the work represent a useful
guide to querying and displaying transit data in MobilityDB and are also
a showcase of its power and flexibility. Even though successful results were
not obtained using the proposed map matching tool, an alternate algorithm
was implemented from scratch in MobilityDB and SQL code that gave
promising results to fixing trajectories in certain complex points of trips.
Finally, visualizations were interpreted and some conclusions were drawn in
the context of the lockdown from the SARS-CoV-2 pandemic.

Page 47

Instituto Tecnológico de Buenos Aires - 2020

5 References

References

[1] Barefoot. url: https://github.com/bmwcarit/barefoot. (accessed:
15.11.2020).

[2] Buenos Aires Data Site. url: https://data.buenosaires.gob.ar/
dataset?groups=movilidad. (accessed: 23.12.2020).

[3] Github Repository. url: https://github.com/pabloito/MDB-Impor
ter. (accessed: 15.11.2020).

[4] Google Maps. url: https : / / www . google . com / maps. (accessed:
23.12.2020).

[5] Google Maps APIs. url: https://developers.google.com/maps/
documentation. (accessed: 23.12.2020).

[6] Grafana License. url: https://github.com/grafana/grafana/

blob/master/LICENSE.md. (accessed: 15.11.2020).

[7] GTFS Real Time Overview. url: https://developers.google.com/
transit/gtfs-realtime?hl=en. (accessed: 15.11.2020).

[8] GTFS Real Time Reference. url: https://developers.google.com/
transit/gtfs-realtime/reference. (accessed: 15.11.2020).

[9] GTFS Realtime API. url: https://www.buenosaires.gob.ar/de
sarrollourbano/transporte/apitransporte/api-doc. (accessed:
15.11.2020).

[10] GTFS Static Buses Dataset. url: https://openmobilitydata.org/p
/colectivos-buenos-aires/1037/20200422. (accessed: 15.11.2020).

[11] GTFS Static Overview. url: https://developers.google.com/

transit/gtfs?hl=en. (accessed: 15.11.2020).

[12] GTFS Static Reference. url: https://developers.google.com/
transit/gtfs/reference. (accessed: 15.11.2020).

[13] GTFS Static Subways Dataset. url: https://data.buenosaires.
gob.ar/dataset/subte-gtfs. (accessed: 15.11.2020).

[14] GTFS Static Trains Dataset. url: https://data.buenosaires.gob.
ar/dataset/trenes-gtfs. (accessed: 15.11.2020).

[15] Hermes. url: https://citeseerx.ist.psu.edu/viewdoc/download
?doi=10.1.1.97.2508&rep=rep1&type=pdf. (accessed: 15.11.2020).

[16] IGN. url: https://www.ign.gob.ar/. (accessed: 15.11.2020).

[17] MDBPaper. url: https://docs.mobilitydb.com/pub/DistMobilit
yDB_BigSpatial19.pdf. (accessed: 15.11.2020).

Page 48

Instituto Tecnológico de Buenos Aires - 2020

[18] MobilityDB. url: https://docs.mobilitydb.com/MobilityDB/

master/mobilitydb.pdf. (accessed: 15.11.2020).

[19] MobilityDB Benchmark. url: https://docs.mobilitydb.com/pub/
MobilityDBDemo_SSTD19.pdf. (accessed: 23.12.2020).

[20] MobilityDB Benchmark infography. url: https://docs.mobilit

ydb . com / pub / MobilityDBDemo _ SSTD19 _ Poster . pdf. (accessed:
23.12.2020).

[21] OpenStreetMap. url: https://www.openstreetmap.org. (accessed:
15.11.2020).

[22] QGIS. url: https://www.qgis.org/es/site/. (accessed: 15.11.2020).

[23] Secondo. url: http://dna.fernuni-hagen.de/secondo/. (accessed:
15.11.2020).

[24] SRID. url: https://en.wikipedia.org/wiki/Spatial_reference_
system. (accessed: 15.11.2020).

[25] Universal Transverse Mercator coordinate system. url: https://en.
wikipedia.org/wiki/Universal_Transverse_Mercator_coordina

te_system. (accessed: 15.11.2020).

Page 49

