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Abstract−−−−−−−− An LPV (Linear Parameter Varying) 

controller design example for a Magnetic Bearing 
System is presented. A linear model of the system 
including bending modes and imbalance is de-
scribed. Simulations and experimental results show 
the usefulness of the LPV method with eigenvalue 
clustering constraints in spite of the limited rotation 
rate range. The results show that this method facili-
tates simulation and allows implementation. Conclu-
sions are drawn on the limited range for the rotation 
rate the LPV controller allows for. 

Keywords−−−−−−−− Magnetic Bearings, LPV Control. 

I. INTRODUCTION 
In this work an LPV approach has been used in order to 
design the control of an Active Magnetic Bearing 
(AMB) system of an MBC500 experimental magnetic 
bearing system. The MBC500 is a product designed and 
manufactured for academic research by Magnetic Mo-
ments, a division of LaunchPoint Technologies, LLC 
(see Paden et al. (1996) for a detailed description and 
the company’s website: http://www.launchpnt.com). 
The particular MBC500 used for the experiments in-
cludes the “Turbo 500” option which allows for con-
trolled rotation of the beam. 

The addressed control problem deals with the stabi-
lization of the machine’s rotating shaft. No matter how 
well balanced the rotor may be, there is always an un-
certain amount of eccentricity in it. This means that the 
axis of inertia is not exactly the geometric one, and as a 
result, imbalance forces appear. As a consequence con-
trolling the vibration of the rotor due to imbalance is 
within the main goals. 

In practice, imbalance can be modeled as “external” 
forces representing the eccentricity, while considering 
the rotor as a rigid body with its inertia and geometric 
axis being the same. As functions of time, these forces 
are considered sinusoidal (while the machine rotates), 
with uncertain but bounded magnitudes and phases, and 
measurable frequency (rotor’s rotating speed). 

This work was originally motivated by the problem 
solved in Matsumura et al. (1996).  In that paper, a gain 
scheduled loop–shaping H∞ control for a motor with 
magnetic bearings is developed. 

In this paper, which is a continuation of the work 
presented in Ghersin et al. (2007), especially as the ex-
perimental results are concerned, we have considered 
the use of LPV control for this kind of application. This 
allows us to take into account parameter varying nature 
of the system’s dynamics. The uncertainty due to high 
order bending modes of the rotor has been considered as 
well. 

When the scheduling parameters enter affinely into 
the system matrices, a simplified version of LPV con-
trollers can be designed Becker and Packard (1994). 
Considering the range of parameter variations as an hy-
pervolume defined by its vertices this methodology 
solves the controller in terms of a finite number of “ver-
tex” controllers. The controller is computed as a convex 
combination of the vertex controllers giving a smooth 
scheduling as the parameter changes. In the sequel, “pa-
rameter” will be taken as parameter vector. These re-
sults will be discussed in the following section. 

To address robustness concerns, the modelling ap-
proach is intended to deal with the flexible dynamics of 
the MCB500’s rotor, covering them with global dy-
namic uncertainty frequency bounds. Simple experi-
mental tests have shown that due to the limited band-
width of the current amplifier of the system, only the 
first two bending modes of the rotor show up in the re-
sponses of the system to sinusoidal signals introduced at 
the voltage control inputs of the current amplifiers. 

A practical problem which appears in the design of 
LPV controllers, is the presence of fast dynamics, which 
appear as fast poles for each frozen LTI system in the 
parameter variation set. This imposes implementation 
restrictions and significantly increases the burden of 
simulation. This problem was previously addressed in 
Ghersin and Sánchez Peña (2002). A survey of this 
technique, which is basically an extensions of the results 
of Chilali and Gahinet (1996) to LPV systems, has been 
given in Ghersin et al. (2007). The results are briefly 
discussed in the following section. 

II. SYNTHESIS METHOD 
The existence of a symmetric positive definite matrix X 
such that given a square matrix A, a Lyapunov inequal-
ity of the form ATX + XA < 0 is satisfied, is a means to 
guarantee that all the eigenvalues of A are in a certain 



Latin American Applied Research  40:303-310(2010) 

304 

region of the complex plane, symmetric with respect to 
the real axis, namely, the open left hand side complex 
plane.  This perspective given in Chilali and Gahinet 
(1996), of a known stability result, motivates the exten-
sion of this idea, consisting in verifying through an 
LMI 1 feasibility problem, whether a square matrix has 
its eigenvalues in regions of the complex plane more 
sophisticated than a half-plane. In the cited paper, an 
analysis tool is developed which allows to verify if a 
square matrix has its eigenvalues within a kind of region 
known as LMI region. The extension of the method to 
LPV systems is straightforward (Ghersin and Sánchez 
Peña, 2002). The synthesis method used in this work is 
based upon the extension. The following definition is 
taken from Chilali and Gahinet (1996). 

Definition 1: LMI-Region. A subset D of the complex 
plane is called an LMI region if there exist a symmetric 
matrix [ ] mm

kl
×ℜ∈= αα  and a matrix [ ] mm

kl
×ℜ∈= ββ  

such that { }0)(: <∈= zfz DD C  with 

 [ ] [ ] .)( ,1 mlklkklkl
T zzzzzf ≤≤++=++= ββαββαD

  (1) 

These regions make up a dense subset in the set of re-
gions of the complex plane, symmetric with respect to 
the real axis. This makes them appealing for specifying 
pole placement design objectives. 

A. Control Problem 
The control problem addressed here, assumes there ex-
ists an open loop LPV augmented plant mapping distur-
bance and control inputs to performance objective and 
measurement outputs described in state space as fol-
lows: 
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The parameter vector ρ is restricted to a convex set P. 
On the other hand, the LPV controller that solves the 
problem has a state space representation as follows: 
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and the closed loop mapping is given in state space as: 
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The following lemma gives the condition later used for 
analysis in this work. 

Lemma 1: Given an LMI region with its α and β matri-
ces as in Eq. (1) and given the closed loop system of Eq. 
(4), if there exists a symmetric positive definite matrix X 
such that the following LMI conditions 
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1 Linear Matrix Inequality. 

 [ ] 0)()( <++ T
cllkclklkl XAXAX ρβρβα ,  (5) 

hold for all k, l in [1,m] and and for all ρ  in P, the 
closed loop system is Quadratically Stable and the in-
duced input–output norm of the LPV system is bounded 
by γ .  Moreover, given any trajectory of the parameter 
ρ  with ρ(t)∈P, the eigenvalues of Acl[ρ (t)] are in D 
for any t. 

It is assumed that B2, C2, D12, D21 are constant matri-
ces for convexity and that D22=0.  The constant matrices 
restrictions can be overcome by filtering y(t) and/or u(t). 
A loop shifting argument suffices to overcome the 
D22=0 restriction. Based upon this analysis condition, a 
system of LMIs which depends just on the open loop 
augmented plant can be derived to carry out controller 
synthesis (see Chilali and Gahinet, 1996) and γ–
performance assessment with pole clustering for each ρ 
in P.  Moreover, if the dependence of the matrices that 
make up the open loop augmented plant on the parame-
ter ρ  is affine, and if the parameter variation set P is a 
convex polytope given by its vertices, then the synthesis 
problem can be cast in terms of an SDP2 optimization 
problem based upon a finite number of LMIs. 

The ad hoc approach we have considered assumes 
that a favorable location of the closed loop poles of each 
“frozen” LTI system will benefit the time response. Al-
though this is not true in general, according to Apkarian 
(1997), a small ρ(Ak) for all ρ bounds the sampling rate, 
either to simulate or to implement the closed loop sys-
tem. Constraining the pole locations of Acl to D indi-
rectly influences ρ(Ak) for all ρ.  Furthermore in this 
case, controllers and closed loop dynamics are related 
by )()( kcl AA ρσ ≥  where σ  and ρ  stand for maximum 

singular value and spectral radius respectively. A gen-
eral proof that quantifies the effect of the closed loop 
“frozen” pole locations in D on ρ(Ak) is out of the scope 
of this paper and a matter of further research. 

III. THE MAGNETIC BEARING EXPERIMENT 
In this section, a description of the Magnetic Bearing 
Experiment is given. A picture of the MBC500 can be 
seen in Fig. 1. The values of the parameters of the shaft 
according to Magnetic Moments LLC (1999); Paden et 
al. (1996) are reproduced in Table 1. 

The derivation of a linear model suitable for LPV 
design takes a number of steps (see Ghersin et al., 
2007). First of all a description of the rigid body dynam-
ics is given in terms of the rotor’s orientation and CM 
position with respect to body of the equipment. Sec-
ondly, the equations that bind the sensor outputs and 
voltage inputs to the kinematic variables and forces ex-
erted on the rotor are given. 

After this, a linearization of the nonlinear equations 
is carried out rendering a linear model having x=[x1 x2]

T, 
x~ =[x3 x4]

T and their time derivatives as state variables.  
The L/R dynamics of the electromagnets are simplified  
 

                                                           
2 Semidefinite Programming. 
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Figure 1: The rotor is levitated using eight “horseshoe” elec-
tromagnets, four at each end of the rotor. 

 
Figure 2: Top view of the MBC500. x1 (x3) and x2 (x4): hori-
zontal (vertical) displacement from equilibrium measured by 
the sensors. X1 (X3) and X2 (X4): horizontal (vertical) dis-
placement of the rotor with respect to the electromagnets. 

Table 1: Parameters of the MBC500 
Symbol Description Value 
L [m] Total length of the rotor 0.269 
l [m] Distance from each bearing to the end 

of the rotor 
0.024 

l2 [m] Distance from each Hall-effect sensor 
to the end of the rotor 

0.0028 

I [kg m2] Moment of inertia of the rotor with 
respect to rotation about the x and y 

axes 

0.0016 

m [kg] Mass of the rotor 0.2629 
 

to i=kav with i being current and v voltage. A discussion 
follows, which leads to treat the horizontal and vertical 
dynamics as decoupled, hence, all experiments were 
carried out on the design of the horizontal controller. As 
a consequence, the first model of the horizontal dynam-
ics is the following: 
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where y= [y1 y2] is the measured voltage output of the 
horizontal displacement sensors, and u = [u1 u2] is the 
control voltage input of the electromagnets. In order to 
obtain a validated linear model, an experimental fre-

quency response of the system was obtained. Equation 
(7) shows the Ao, Bo and Co matrices which are the ma-
trices that make up the initial model based upon the pa-
rameters of Table 1 (see Magnetic Moments LLC 1999; 
Paden et al., 1996).  The latter were used by a nonlinear 
minimum squares algorithm, as initial conditions for the 
optimization process leading to final A, B and C matri-
ces which make the model of Eq. (6) fit the experimen-
tal frequency response. The A, B and C matrices result-
ing from the fitting process are shown in Eq. (7) as well. 
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A. Flexible Modes 
Including a model of the first two bending modes of the 
rotor proved to be important as far they are likely to 
receive excitation due to the digital implementation of 
the designed controllers. The reason for not including 
any modes higher than the second, is that because of the 
bandwidth of the actuator’s current amplifiers in the 
electromagnet’s L/R circuit, it is practically impossible 
that these modes would receive excitation. In Morse et 
al. (1996) a model with four states for the two first 
bending modes is presented. Here, following the ap-
proach of Arredondo et al. (2004), a differential equa-
tion with four states is used as well, to model the first 
two bending modes.  

As far as a spectral analysis of the rotor’s dynamics 
is concerned, a clear separation exists between the flex-
ible modes and the rigid body modes. The rigid dynam-
ics show up in the frequency band from DC to about 
100 Hz where it rolls-off, and the bending modes are at 
777 Hz (first) and 2065 Hz (second). A practical ap-
proach for the final model which reflects the rigid and 
flexible modes, consists in the superposition of three 
linear blocks as shown in Fig. 3. 
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Experimental frequency responses of the system were 
obtained at the frequency bands of the bending modes. 
A parameter selection in the Afi, Bfi and Cfi matrices with 
i = 1, 2 was carried out seeking an adequate fitting of 
the experimental frequency responses. The final values 
of the model parameters for the bending modes are the 
following: 
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Figure 3: Superposition of Rigid and Flexible Dynamics 
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B. Rotor Eccentricity 
Eccentricity is taken into account as external forces act-
ing on the rotor. Rather than a fine identification of the 
magnitude and direction of the source of the imbalance, 
a gross estimate of this force is sought. A simplification 
is carried out in this regard, neglecting the variations in 
the rotation rate of the shaft. Hence, the eccentric force 
of the model only depends on the square of the rotation 
rate. As a consequence, a very simple calculation is car-
ried out for this static case which slightly modifies Eq. 
(6) in order to take imbalance into account in the rigid 
dynamics as follows: 
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with 

oim rk
100

1

2

1=    
oo dr

2

1=    mdo
31012 −×=  

where do is the diameter of the shaft. The 1/100 factor 
stems from the assumption that the distance from the 
true CM to the geometrical axis of the rotor, is in the 
order of one percent of the shaft’s radius (an assumption 
which is somewhat pessimistic – see Fig. 4). The ½ fac-
tor stems from the fact that two bearings cope with the 
eccentricity. 

As the Gf1 and Gf2 blocks are concerned, there is a 
priory knowledge of the frequency band where the ωim 
signal appears. This is directly related to the range of 
rotation rate of the shaft, and it is assumed that this sig-
nal does not present and excitation to the bending mod-
es, because of the fact that the maximum rotation rate of 
the machine is 10000 rpm, i.e. 166 Hz, while the bend-
ing modes are in 777 Hz and 2065 Hz. 

 
Figure 4: Diagram for the eccentricity model 

IV. CONTROL AND SIMULATION RESULTS 
In this section the results of the control system design 
are presented with simulations. The solution of the con-
trol problem aims towards the following goals. Stabilize 
the shaft through a closed loop controller, avoid the ex-
citation of the bending modes (which can actually and 
eventually be heard in practice) and render adequate 
imbalance rejection in a range of rotating rates as broad 
as possible. 

In order to evaluate performance of the designed 
controllers, frequency responses of the Output Sensitiv-
ity functions will be presented. In this problem, good 
tracking is not the main goal, especially since it would 
demand a high loop gain in low frequency, which in 
turn would lead to a peak in the sensitivity function at a 
frequency close to the cross-over frequency. This is 
because of fundamental limitations of closed loop sys-
tems in presence of unstable poles (see Morse Thibeault 
and Smith, 2002; Seron et al., 1997). Another way to 
evaluate performance will be through simulated time 
responses to step inputs, which should show no excita-
tion of the bending modes and acceptable transient be-
havior. In particular these responses will be compared 
with the transient behavior of an H∞  controller. Finally, 
in the following section, experimental results are shown. 
The spinning of the shaft will be the ultimate test. Time 
responses to the equivalent sinusoidal inputs will be 
observed in the simulations of this section as well. 

A. LPV design 
Together with the LPV design, an H∞  controller is ob-
tained with the intention of comparing it with the LPV. 
The statement of the problem is the same for both. The 
details of the LPV approach are presented first, with 
remarks concerning the feasible parameter variation set. 
Regarding the Robust H∞  methodology, the controller 
aims towards the operation of the rotating machine with 
a fixed rotating rate of 5000 rpm. The result gives a ref-
erence of the desirable γ performance factor for the LPV 
design and this in turn, is related to the subject of the 
size of the parameter variation set. 
Anticipating the final remarks, an immediate conclusion 
of this work is that the feasible parameter variation set 
for the LPV problem is not satisfactory for this applica-
tion. Even though a natural parameter variation set ex-
ists (Pn = 0-10000 rpm), which is given by the manu-
facturer of the Magnetic Bearing Experiment, it was not 
possible with this range to obtain a feasible solution to  
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Figure 5: Augmented Plant 

Table 2:  Performance Index and Parameter Variation Set 
Method Range[rpm] γ Index 
H∞ r = 5000 2.572 
LPV r ∈ [4000, 5000] 6.1483 
LPV r ∈ [3500, 5000] infeasible 

 

the γ-performance LPV control problem with pole 
placement constraints (Sect. II). 

Different parameter variation sets were tried in order 
to establish in what cases a solution to the control prob-
lem existed, and how performance was affected by the 
size of the parameter variation set (given feasibility). 
Before turning to the details of this trial and error proc-
ess, the statement of the control problem, i.e. the aug-
mented plant with the weighting functions, will be pre-
sented. 

The diagram of Fig. 5 shows the blocks involved in 
the augmented plant. In order to simplify the problem 
statement and with the objective of keeping the parame-
ter varying part of the problem circumscribed to the W1 
block, a minor modification is carried out on Eq. (8). As 
a result, the r2 factor multiplying the kim constant is 
moved into the W1 weight and the Gr transfer matrix is 
as follows: 
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It is remarked that the r2 factor that accounts for the 
increase in the magnitude of the imbalance force (as the 
rotation rate grows), has been removed from Eq. (8) to 
obtain the description of the Gr(s) transfer matrix. As 
the H∞ and LPV methods used for synthesis in this ap-
plication consider all disturbance inputs to be signals in 
L2 (i.e. d1, d2 ∈ L2), we resorted to including the W1 
block, a variable gain, variable frequency bandpass pre-
filter, that accounts for the fact the true ωim signal (see 
Eq. (8)) is a sinusoidal signal of known frequency 
whose amplitude depends on r2. As it was previously 
mentioned, this disturbance signal serves the purpose of 
modelling the imbalance forces acting on the rotor. As a 
sinusoidal signal, its frequency is given by the rotation 

rate of the shaft. Given a fixed rotation rate r, the trans-
fer function of the W1 filter turns out to be as follows: 
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Notice that the state space representation of Eq. (10) 
shows the affine dependence of the state space matrices 
of the filter on r and r2. When setting up the LPV syn-
thesis problem, the existing relation between r and r2 
will be neglected.  As far as the synthesis method con-
cerns, the ω1 weighting function depends affinely on 
two independent parameters p1=r and p2=r2. No advan-
tage is taken from knowing that p2 = p1

2 and in that way, 
the approach is slightly conservative. 

On the other hand, the Wu(s) and W∆(s) filters are 
shaped in frequency with the following objectives in 
mind.  In the case of Wu(s), penalize any control action 
above a given ωu frequency and in the case of W∆(s), 
give the synthesis algorithm the frequency information 
concerning the bending modes. The transfer functions of 
the weights are as follows: 

 








=

∆

∆
∆ )(0

0)(
)(

s

s
sW

ω
ω  

 








=

)(0

0)(
)(

s

s
sW

u

u
u ω

ω  

 )()()(
21

sss bb ωωω =∆
 

 
u

uu s

s
ks

ω
ω

+
=)(  

 
22

22

)(
iii

ii

i

bbb

bb
b ss

ss
s

ωωζ
ωω

ω
++

++
=  with i=1,2. 

with  
  srad5002πω =u

    3.1=uk   

  srad7772
1

πω =b
    02.0

1
=bζ   

  srad20652
2

πω =b
   02.0

2
=bζ   

W∆(s) can be thought of as a weighting function for a 
family of plants with additive uncertainty and Wu(s) is 
the weighting function penalizing control action in high 
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the norm reduction of the mapping from d2 to y∆ (see 
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Figure 6: Frequency response of the maximum singular value 
the Output Sensitivity Transfer Functions. Solid line: H∞, 
dash–dot line: LPV(rmax), dots line: LPV(rmin). 
 

The shape of the ω2 and ωu filters follows typical 
guidelines for the choice of closed loop bandwidth and 
control bandwidth. Avoiding a high peak in the magni-
tude of the frequency response of the sensitivity transfer 
function is sought as well (see Zhou, 1998; and Zhou, 
1996). An iterative process was carried out as well for 
the final fine tuning of these values.  

Parameter Variation Set 
The general observation concerning the parameter varia-
tion set is that given a maximum value for the rotation 
rate rmax, the reasonable parameter variation set for the 
two parameter (r, r2) LPV system is 

 ( ) [ ] [ ]{ }22
21 ,,, xmainmxmainm rrrrpp ×∈=P  

with rmin = 0.8 rmax. This rule was empirically estab-
lished following the aforementioned criteria of feasibil-
ity of the corresponding LMI problem and performance 
index within three times the  performance index of the 
Robust H∞ problem resulting from holding the parame-
ter r fixed at r = rmax. 

Table 2 shows the H∞  and LPV control designs that 
were attempted. Because of the infeasibility of the op-
timization problem for the whole [0, 10000] rpm range, 
the [4000, 5000] rpm range was tried in order to draw 
conclusions. The H∞ design carried out, corresponds to 
r = 5000 rpm. As can be seen in the table, a greater in-
terval was infeasible. 

B. Frequency Responses and Simulation Results 
In the present section frequency response graphics are 
shown, as well as simulated time responses. 

Notice in Fig. 6 that the H∞ design, specifically de-
signed for a fixed rotation rate, renders a reduction of 
the sensitivity at the expected rotation rate frequency. 
On the other hand the frequency responses of the LPV 
controller calculated for r=r max and r=r min, show higher 
gains at low frequency than the H∞. 

Figure 7 shows time responses to step inputs to be 
followed by the x1 output. Recall that good tracking is 
not a must, but it cannot be too poor either. If that were 

the case, the system might fail to stabilize the rotor for 
r=0 rpm. 

Figures 8 and 9 show time responses to sinusoidal 
inputs injected on both sides that simulate imbalance 
forces. 

These are to be rejected. Notice that the H∞ design 
performs better than the rest at the specific frequency it 
was designed for (rmax = 5000 rpm) while achieving a 
decent result for the low rotation rate the LPV was de-
signed for (rmax = 4000 and 8000 rpm). Naturally, the 
LPV performs better than the H∞  in this case, but not 
by far. 
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Figure 7: Step Responses. Solid line: H∞, dash–dot line: 
LPV(rmax), dots line :LPV(rmin). 
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Figure 8: Responses to Sinusoidal Force of frequency 
r=rmax=5000 rpm. Solid line: H∞, dash–dot line: LPV(rmax). 
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Figure 9: Responses to Sinusoidal Force of frequency 
r=rmin=4000 rpm. Solid line: H∞, dots line: LPV(rmin). 
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V. EXPERIMENTAL RESULTS 
In this section, the experimental results are presented. 
With respect to the experimental results presented in 
Ghersin et al. (2007), the difference resides in the suc-
cessful implementation of an LPV controller. It must be 
said that the H∞ synthesis with pole placement con-
straints for this case, rendered an unstable controller. As 
a consequence, the H∞ Robust controller was redes-
igned without pole placement constraints as in Ghersin 
et al. (2007) but with the modifications on the aug-
mented plant introduced here. The results obtained are 
similar while the controller remains suitable for imple-
mentation. The LMI region used for the LPV synthesis 
with pole placement constraints of this paper was the 
following: 

 { }21002)(: π−>ℜ∈= zCzD . 

In terms of the α and β matrices of Eq. (1), this region 
gives scalars α = -2π 2100 and β= −1. In spite of the 
fact that this is a very simple LMI region as the size of 
α and β is concerned, the computation time of the LPV 
controller is considerably increased. 
Figures 10 to 14 show the responses of the experimental 
equipment for three different controllers with the ma-
chine operating at 4000 and 5000 rpm respectively. The 
measured signals, displayed in an oscilloscope in XY 
mode, are the horizontal (x1) and vertical (x3) displace-
ments of the rotor on the left hand side of the machine. 
The displayed voltage signals correspond with dis-
placement with a factor of 1 mm per volt (i.e. 100 mV is 
0.1 mm). The scale of the horizontal and vertical axes 
for all Figs. is 200 mV/div.  Notice that only the excur-
sion in the X axis matters in order to evaluate the per-
formance of the designed controllers.  The control of the 
vertical axes x3 and x4 was left to the internal compen-
sator. Figures 10 and 11 show the responses with the 
internal compensator of the MBC500, Fig. 12 with the 
Robust H∞  controller designed for imbalance forces at 
5000 rpm (in the sequel H∞

5000) and Figs. 13 and 14 
with the LPV controller. The response of the H∞

5000 

(Fig. 12) shows the filtering of imbalance forces that the 
controller does at 5000 rpm which is remarkable. As it 
stems from Figs. 13 and 14 the remarkable aspect of the 
performance of the LPV controller is that it greatly im-
proves the performance with respect to the internal 
compensator especially for the 4000 rpm rate (67 Hz) a 
 

 

 
Figure 10: Experimental Responses to 4000 rpm. x and y axes: 
Internal Compensator. 

 
Figure 11: Experimental Responses to 5000 rpm. x and y axes: 
Internal Compensator. 

 
Figure 12: Experimental Responses to 5000 rpm. x-axis con-
troller: H∞

5000 , y-axis controller: Internal. 

 
Figure 13: Experimental Responses to 4000 rpm. x-axis con-
troller: LPV, y-axis controller: Internal. 

 
Figure 14: Experimental Responses to 5000 rpm. x-axis con-
troller: LPV, y-axis controller: Internal. 

frequency within the open loop bandwith. The perform-
ance of the H∞

5000  controller at 4000 rpm wass between 
the LPV and the internal compensator. 

VI. CONCLUDING REMARKS 
The use of LPV synthesis methods for this application is 
a priory appealing, motivated by references such as Ma-
tsumura et al. (1996) where traditional gain scheduling 
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is used, and by the results obtained for this work both 
experimental and simulated. In spite of the benefits it 
provides in terms of smooth scheduling and guaranteed 
stability, the method has shown its problems as far as 
the parameter range is concerned. This issue suggests 
the use of less conservative techniques such as LPV 
synthesis based upon Parameter Dependent Lyapunov 
Functions (Wu et al., 1996; see also Apkarian and Ad-
ams, 1998). The use of more advanced LFT techniques, 
which give less conservative solutions, such as Scherer 
(2001) is another possible direction for LPV re–design. 
Regarding the techniques of Scherer (2001), preliminary 
research of the authors on the subject, has shown their 
practical implementation is yet not a fully solved prob-
lem (see Trangbæk, 2001; Ghersin, 2006). 

The matter of fast dynamics that prevents the easy 
implementation and simulation of controllers has been 
addressed through the technique of section II, which is 
pretty simple as the complexity in its application is not 
greater than that of H∞ control. This technique even 
renders an LMI problem with a finite number of con-
straints (at the expense of being conservative, perhaps). 
The results presented in Ghersin et al. (2007) obtained 
with this technique were not useful (the LPV controller 
was unstable), while the difference with this success-
fully implemented controller was a matter of fine tun-
ing. This can be understood considering that neither 
LPV control with pole placement constraints nor H∞ 
control with pole placement constraints guarantee stable 
controllers. 
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