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We discuss the connections between Brownian ratchets (BR) and stochastic resona
We consider a periodic potential energy landscape with no left–right symmetry that
by an external force which can be derived from a potential that is periodic both in 
space. We show that this system presents two thermal enhancements within two
windows of the temperature. One is associated with a ‘‘coherent diffusion’’ by which
jump back and forth between the minima of the periodic potential in synchrony
external driving. The other is instead associated with a ‘‘coherent directional trans
which particles hop synchronically from one minimum of the ratchet to the next. We
the current and the diffusion coefficients and show how transport undergoes a 
enhancement. While the former is always present, the second only appears when 
symmetry is broken.
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Brownian Ratchets (BR) are devices out of equilibrium in which fluctuatio
possible the directional transport of particles along a periodic potential wi
left–right asymmetry. These devices that where first proposed by Smolucho
and later discussed by Feynamnn [2] have deserved a great deal of attentio
literature (for reviews see Refs. [3,4]). There is a wide diversity of areas in wh
are applied, for instance the working of molecular motors [5], the descriptio
channels and molecular transport within cells [6] and the treatment of Pa
paradoxical games [7–9].
Stochastic resonance (SR) also represents a physical situation in which fluc

play a similarly constructive role. It consists of a noise assisted enhancement b
power from the whole noise spectrum is pumped into a single mode that is
with an external driving force. This was first proposed in Ref. [10] to explain lo
fluctuations in the Earth’s climate but has later triggered a vast field of researc
which the biophysics of neural systems has a particularly important role [12
Ref. [15] the theory of SR has been discussed for two state systems and in Ref.
presented as a synchronization of the hopping mechanism between wells ind
the external periodic driving. In Refs. [17,18] a more general treatment of this
explained. A review of SR can be found in Ref. [19].
Although BR and SR are different physical phenomena, the fact that bot

placed within the same realm of noise-assisted non-equilibrium phenome
induced several authors [6,20,21] to state that BR and SR may share some c
underlying physical concepts. An attempt of a connection between SR and
been reported in Ref. [22] for a BR based on a Parrondo paradoxical ga
interference of two games plays the role of a random perturbation that gives
resonant enhancement of the profit.
The present paper aims at bridging the gap between the theories of SR an

discussing how both phenomena may occur in the same physical system in
having deep physical differences. We do this by presenting a particular case
in which the directional transport of particles can resonantly be enhanced
window of values for the temperature. We refer to this device as a stochastic

ratchet (SRR). This model helps to discuss the similarities and the dif
between the physics underlying BRs and SR. On the one hand the SRR
assimilated to a spatially extended SR: particles are subject to thermal fluc
and are placed in a periodic potential. A weak, periodic, external drivin
consecutive wells of the ratchet to alternate as absolute minima. Different
thermal noise are therefore expected to give rise to various regimes for the
of particles between consecutive minima, and thus to the transport of particl
the potential landscape. On the other hand, within the general theory of BR
SRR can be framed as a tilting ratchet bearing also some similarity to the p
case of a rocking ratchet presented in Ref. [24], with a different type of
driving term.
The present work is organized as follows: in Section 2 we introduce th

under study. In Section 3 we discuss how this system presents two SRs



different values of the amplitude of the external random fluctuations and in Section 4
iffusion.
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we discuss the competition between directional transport and Brownian d
Conclusions are drawn in Section 5.
2. The model
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e is the
, o ¼ :2
Þxðt0Þi ¼
We consider overdamped particles placed in a periodic potential. T
evolution is given by the equation

_xðtÞ þ
qVaðxÞ

qx
¼ F drðx; tÞ þ xðtÞ .

In Eq. (1), xðtÞ represents the coordinate of the particle and V ðxÞa is
dimensional, asymmetric periodic potential. We take

VaðxÞ ¼

�V 0ðcos½
p
a ððaþ 1Þx þ 1Þ� þ 1Þ for � 1pxp�

1

ðaþ 1Þ
;

V0ðcos½pðaþ 1Þx� � 1Þ for �
1

ðaþ 1Þ
pxp0

8>>><
>>>:

fulfilling the periodicity condition Vaðx þ 1; tÞ ¼ V aðx; tÞ. Lengths alon
measured in units of the period of V a and a (a40) controls the left–right asy
Solutions for a41 in which the minimum in each well of the ratchet is d
towards the right are equal to the time reversed solutions with ao1 in which
are displaced towards the left. Particles are driven by the external periodic
force F drðx; tÞ. We take this to be the gradient of a time-dependent potentia
spatial periodicity that is twice the one of Va in order that consecutive wells a
in time as absolute minima. We therefore consider

F drðx; tÞ ¼ �e
qV drðx; tÞ

qx
¼ �e sinðotÞ

d sinðpxÞ

dx
.

Time is measured in units of the period t ¼ 2p=o of the external driving and
coupling strength. All the calculations that we report were made for V 0 ¼ 5
and e ¼ 12. The last term in Eq. (1) is a Gaussian white noise fulfilling hxðt
2kBTdðt � t0Þ thus representing a thermal bath of temperature T.
3. A double resonance
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In the usual treatment of SR the response of the system is given by the am
of the induced noisy oscillations. We calculate this by integrating the st
Langevin equation (1). We also perform an average over several realizations
for randomly distributed initial conditions. The quality of such response is
through the signal-to-noise ratio (SNR) measured in its power spectrum. The
SRR allows to consider T as a control parameter and to look for the conditio
SR. Accordingly, an enhancement of the SNR [15] should be expec
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wells. In the present case U is directly related to the amplitude V 0 in Eq. (2)
the SRR into the above framework we consider that the output signal of the
the coordinate xðtÞ of the particles that are transported along the periodic p
To evaluate the power spectrum we restrict xðtÞ to the interval ½�1; 1� by
yðtÞ ¼ xðtÞ � n for n � 1pxpn þ 1, and n ¼ 0; 2; . . .. The resulting power s
can be seen in Fig. 1 for several values of T. A clear peak can be observed at t
frequency of the external driving. There is also an irrelevant replica of this p
frequency three times larger that is a result of the truncation of the signa
interval ½�1; 1�. A second lower peak is found at twice the frequency of the
driving.
The second peak is a direct consequence of the broken left–right symmet

potential (for further discussion of this point see Refs. [17,23]). To see this
that such potential asymmetry forces the particles located in consecutive
follow trajectories that approach the origin in one well while depart from
next one. The result is that the response of the system looks like a noisy, d
square wave in which the broken symmetry manifests itself through the pre
even harmonics of the fundamental frequency (see Fig. 3). The situation is s
fluctuations can produce an optimal matching between both trajectories thr
SR mechanism. The remarkable point is that the effect of a cascade
matchings is to force particles to hop between consecutive wells in the d
prescribed by the broken symmetry of the potential. When a ¼ 1 particles n
approach or depart the origin, even harmonics no longer appear and there
preferred direction for hopping.
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Fig. 1. Power spectrum of the response yðtÞ for the values of T that are shown in each panel. The results

correspond to an ensemble average of unfiltered signals originated in 50 initial conditions that have a

Gaussian distribution restricted to the well at the left of the origin. The lowest peak occurs at a frequency

equal to the external driving (o ¼ 0:2). The next peak indicated by an arrow occurs at twice that frequency
and undergoes a resonance at ð2kBTJ Þ

1=2
’ 1:46. It cannot be detected at T ¼ TSR (last panel at the right).

See also Fig. 2.



The T-dependence of the SNR of the two lowest peaks is shown in Fig. 2. Both
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Fig. 2. Plot of the SNR associated with the two peaks (o ¼ 0:2 and o ¼ 0:4 commented in Fig. 1 as a
function of ð2kBTÞ

1=2. The plot of the SNR of the second peak is displayed in the inset. In all cases we

display the results for a ¼ 3 and a ¼ 1.
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display maxima at two different temperatures. The system therefore has two

SRs. While the SNR of the first peak attains a maximum for a temperature
estimated from the general theory [15] of SR, the SNR of the next peak at t
frequency that corresponds to the transfer of particles attains a maxim
temperature TJ that is appreciably smaller than TSR. The smaller fluc
associated with TJ allow to detect the directionality of the potential. At T

the larger fluctuations prevent instead the detection of its broken l
symmetry. A higher T thus enhances the hopping between wells but on t
hand destroys the directional transport. This interpretation may be corrobo
comparing the T dependence of the SNR of both peaks as obtained wi
(symmetric potential) and a ¼ 3 (asymmetric potential). The SNR associa
the lowest frequency peak is left essentially unaltered by change of a while the
frequency SR completely disappears when a ¼ 1.
4. Coherent hopping vs. Brownian diffusion
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We now turn to study the SRR within the usual framework of BRs. To thi
have solved the thermal Langevin equation (1) through finite differences for
of particles corresponding to an ensemble of 1000 initial conditions that
Gaussian distribution confined within the well at the left of the origin. In this
do not restrict the motion to the interval ½�1; 1� and we instead calculate the
current (transport velocity) J along the (infinite) periodic potential. We also c



the effective diffusion coefficient Deff as a function of T . These are defined as� �
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Fig. 3. Plot of yðtÞ as a function of t for T ¼ TJ and a ¼ 1 and 3. The values of yðtÞ in the asymmetric case

(a ¼ 3) fluctuate around an average trend (shown as a white line) with a positive slope. The resulting

distorted square wave has even and odd harmonics of the fundamental frequency. In the symmetric case

(a ¼ 1) the average trend has a vanishing slope and even harmonics are no longer present. At a higher T ,

fluctuations wash out any effect of the broken left–right symmetry of V a.
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J ¼ lim
t!1

JðtÞ ¼ lim
t!1

xðtÞ

t
,

Deff ¼ lim
t!1

Deff ðtÞ ¼ lim
t!1

1

2t
ðx2ðtÞ � hxðtÞi2Þ

� �
.

In Eqs. (4) and (5) the symbol h�i represents ensemble average. Except for v
values of T the results of JðtÞ and Deff ðtÞ have a remarkably smooth behav
allowing to take the limits indicated Eqs. (4) and (5) in a straightforward w
In Fig. 4 we show J and Deff as a function of T . The plot of J is seen to d

maximum at a value TJoTSR obtained above. The dependence of J on T s
Fig. 4 is completely similar to the one shown in the inset of Fig. 2. Since J m
the transport of particles along the ratchet potential, this result agrees
physical picture already presented by which the directional transport is re
enhanced by thermal fluctuations. The effect of different values of a on J can
observed in Fig. 4. The two extreme situations of T5TSR;TJ and TbTSR

easily be understood. In the former case transport is impossible because ve
thermal fluctuations leave all particles confined in the initial well. For larg



current J drops because the asymmetry of the potential ratchet becomes irrelevant

the time
ature T .
ual to t.
ectional
inimum
there is
ext well.
astically
he next.
een lost
equally
ual to 3t
inima of

d in the
ket hop
istortion
ng. This
indered
herefore
ment of

1 1.5 2 2.5 3

(2kBT)1/2

(2kBT)1/2

0.01

1

D
ef

f

α =2
α =3

1 1.5 2 2.5 3
0

0.5

1

1.5

2

J

α =2
α =3

(a)

(b)

Fig. 4. Panels (a) and (b) show the current J and the effective diffusion coefficient Deff , respectively, as a

function of T . Note the log scale for Deff . Compare the curves in panel (a) with the inset of Fig. 2.
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and particles diffuse in both directions.
The different transport regimes are displayed in Fig. 5 in which we plot

evolution of the Gaussian packet for three different values of the temper
Successive rows starting from above display the packet after an interval eq
Column (a) corresponds to a temperature ToTJ . It is seen that a dir
transport prevails: after an interval t always new peak appears in the next m
of the ratchet potential. However, such transport is not optimal because
always a sizable peak of lagging particles that have not yet hopped to the n
In column (b) the temperature is T ¼ TJ . The lagging particles have been dr
reduced and particles hop almost in perfect synchronism from one well to t
Panel (c) corresponds to a temperature T4TJ . Directional transport has b
and Brownian diffusion prevails. At such a high temperature particles are
likely to hop in the forward or in the backward directions and after a time eq
the initial packet has been distributed almost evenly in four neighboring m
the ratchet potential.
The competition between directional and Brownian diffusion is displaye

plot of Deff vs. T . As long as TpTJ the particles of the Gaussian pac
between consecutive wells in a preferred direction. At T ’ TJ a minimal d
of the original packet is achieved due to an optimal coherence in hoppi
corresponds to a minimum of Deff . For lower values of T such coherence is h
because some particles are left behind. The Gaussian packet gets broader t
giving rise to an increase of Deff . For even lower values of T the confine



particles prevents any diffusion and Deff ! 0. For T4TJ , a different regime starts
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Fig. 5. Time evolution of an ensemble of particles that have initial conditions with a Gaussian distribution

within the well placed at the left of the origin. Time runs downwards, the interval between neighboring

rows is t and the first row corresponds to a time t ¼ t=4. Each column corresponds to a different

temperature. Column (a) corresponds to ToTJ (ð2kBTÞ
1=2

¼ 1:2), column (b) to T ¼ TJ

(ð2kBTÞ
1=2

¼ 1:46) and column (c) to T4TJ (ð2kBTÞ
1=2

¼ 2:5). Consecutive minima are separated by a
distance x ¼ 1.
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to prevail. The Gaussian packet gets distorted because particles increasingl
the backward direction. When TbTJ there is no trace left of the original G
packet and Deff grows monotonically.
5. Conclusions
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We have presented a model consisting in a periodically driven BR that e
double resonance. One is associated with a broken symmetry of the poten
shows up as a magnification of the directional current of particles within a
window of the temperature. This enhancement is achieved due to an
coherence in the hopping of particles between neighboring wells as check
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potential. This resonance takes place at temperature TJ that is significant
than the one estimated from the theory of SR. The second enhancement app
temperature T ¼ TSR4TJ and is properly described by the well-known
theory of SR. This turns out to be insensitive to the broken left–right symm
the ratchet potential and corresponds to an increase in the effective d
coefficient. By the time in which the system undergoes this SR, directional t
is hindered, coherence in the hopping between wells is impaired and parti
between wells regardless of the directionality of the ratchet potential.
This discussion indicates that both enhancements, in spite of being contr

external stochastic fluctuations, have distinct physical origins. The enhancem
lower temperature is associated with the maximum possible difference betw
escape rates in the forward and backward directions and it only appears in
potentials that lack left–right symmetry. The enhancement at a higher tempe
instead the only one that truly corresponds to the well-known SR theory. It
at a T corresponding to purely diffusive regime and can be found also in sy
periodic potentials, and corresponds to particles jumping back and
synchronization with the external driving.
It has been argued in Ref. [28] that the output signal xðtÞ on a periodic s

does not show SR. In the present model the SR is seen not for the output si
but for yðtÞ ¼ xðtÞ � n, for n � 1pxpn þ 1 and n ¼ 0; 2; . . .; i.e., for the restr
xðtÞ to the interval ½�1; 1�. The occurrence of SR in yðtÞ at a frequency o
report in this paper should, however, not be considered a numerical artif
filtering of xðtÞ is meant to eliminate zero-frequency components of xðtÞ (tha
make this output signal unbound) and corresponds to the synchronization
in Ref. [16] between the directionless hopping among neighboring wells
external periodic driving.
The present discussions of SR and BR apply to extended systems. It is

therefore to claim that the present family of SRRs can also be framed w
same realm of systems that undergo spatiotemporal SR [25–27] in w
extended regular pattern synchronizes with an external periodic driving at
well-defined noise level. This also suggests that this phenomenon can also b
in BR involving periodic potentials with a higher dimension.
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