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We characterize the dynamics of runners in the famous "Running of
the Bulls" festival by computing the individual and global velocities
and densities, as well as the crowd pressure. In contrast with all
previously studied pedestrian systems, we unveil a unique regime
in which speed increases with density, that can be understood in
terms of a time-dependent desired velocity of the runners. Also,
we discover the existence of an inaccessible region in the speed-
density state diagram that is explained by falls of runners. With
all these ingredients, we propose a generalization of the pedestrian
fundamental diagram for a scenario in which people with different
desired speeds coexist.
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he world-famous Running of the Bulls (San Fermin) Fes-
tival constitutes a unique system of pedestrians running

away from bulls at the streets of Pamplona (Spain). Curiously,
despite this race has been repeatedly used as an illustration of
competitive pedestrian dynamics, it has not been studied in
detail until now. Runners, first waiting for and then escaping
from bulls, constitute a fascinating annual scenario of real
fleeing pedestrians, becoming an invaluable opportunity for
studying and understanding extreme pedestrian dynamics.

One of the main macroscopic observables for characterizing
pedestrian systems is the fundamental diagram derived from
the speed-density relation for a group of moving pedestrians
(1-16). This relation, which is used as a benchmark in design
and planning (17-20), accounts for the accepted fact that the
speed of the group decreases monotonically as the density
increases. Under ordinary conditions, this behavior can be
explained because people try to avoid physical contact and
slow down when the available space reduces. A key feature of
this plot is the speed at near-zero density, which indicates the
velocity at which pedestrians would move if they were alone.
This speed is known as the desired speed or the free speed
(’Uo).

Given their importance, speed-density relations are widely
studied in the literature; however, most of the existing investi-
gations assume implicitly two essential facts:

o All pedestrians have constant desired speed normally
distributed with small variance (an exception to this is the
time dependent desired speed implemented in (21)).

o The speed-density relations correspond to stationary (or
quasi-stationary) pedestrian systems.

Importantly, these premises hold even for the fundamental
diagrams obtained in extreme conditions. As examples, we
highlight the fundamental diagram for running pedestrians at
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Fig. 1. Layout of the street and locations where the videos were recorded on July
8 (Day 1) and July 9 (Day 2). Dotted rectangles indicate the field of view (FOV) of
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the camera. Blue arrows indicate the camera position. Red lines show recorded bull
trajectories (heads and tails).
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medium speed (16); the empirical results collected in a real
event (8); and the outcomes obtained in highly competitive
evacuation drills in which pedestrians were allowed to push
each other (22). In these last two cases, very high densities
were present (which dominate the dynamics) and the free
velocities were below 1.5 m/s. Remarkably, the assumptions
used for traditional fundamental diagrams are not valid in the
Running of the Bulls festival. Here, a moving threat (the bulls)
induces time-dependent desired velocities along with a broad
distribution among individuals. In order to understand the
complicated dynamics observed, we characterize this system
by studying -among other variables- the speed, density, and
falling probability of the pedestrians.

The pedestrian system

During the week of the San Fermin festival, there is a bull-run
("encierro") every morning through the streets of Pamplona.
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real data of pedestrian dynamics under extreme conditions can
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Fig. 2. States of the pedestrian system. A: state S 4, B: state Sg, C: state S¢, D:
state Sp, E: state Sg. See text for description of the states. In the snapshots, labels
indicate the pedestrian number, the circles mark the actual position of runners, and
the dotted lines show the distance traveled by runners in a time lapse of 0.13 s (see
Materials and Methods). Bulls are indicated by 6 runner-equivalent circles. On the
right, the PDF of the x-component of the velocity is displayed for each state.

The course is 875-meter long, starting in a yard, and finishing
in the bullring (see map in (23)). There, people run in front
of six fighting bulls which are accompanied by six tamed bell-
oxen. Although the distance is not too long, it is impossible
for a runner to cover the whole course for several reasons, such
as the presence of other runners and, above all, the high speed
of the bulls (the mean speed of the bulls, in our measurement
areas, is 6 m/s).

We recorded two of these runs on consecutive days (July
8 and 9, 2019) at two different locations in Estafeta street.
This 300 meters long street is the most famous in the bull-run
and is characterized by being relatively narrow (around 7 m
wide). It starts at a corner; we have taken one recording ten
meters after it, and another one at about the middle of the
street length. Both locations and the corresponding field of
view (FOV) are shown in Fig. 1.

Trajectories of individual bulls and runners were extracted
from videos (see Materials and Methods). Bulls were marked
as 6 human-equivalent positions (the mass of a bull is similar to
the mass of 6 runners): one on the head, one on the beginning
of the tail, and the rest on top of each leg (two over the
scapulae and two over the hips). These six points were taken
as 6 virtual humans when calculating the densities of neighbor
runners, but were not considered in any other calculation
performed in this work. The computed speeds, densities, and
other related quantities, all correspond only to the runners.

In order to understand the results, it is important to know
the proceedings of the festival. People are admitted into the

premises at 7:15 a.m., and they wait there for 45 minutes. We
have called this state Sa, in which runners first remain in
place, at high density, and then walk slowly (see the x-velocity
distributions, vg, in Fig.2A and Appendix SI, Movie S1). At
8:00 a.m. the bullring door —at the end of the course— is open,
and a sizable portion of the people walk into it, so that only
some runners remain in the path waiting for the bulls. The
street becomes less congested and, occasionally, runners are
seen to warm up (Fig.2B, system state Sg). Then, a few
seconds before the bulls arrive, a shock wave of running pedes-
trians at high velocity is observed. This shockwave triggers
the starting of the race of the waiting runners. This behavior
nicely correlates with the velocity distributions displayed in
Fig. 2C, which show two clear peaks at v; = 0 and v, = 3.5
m/s, corresponding to what we have called state Sc. Once
the bulls along with the runners in front of them have passed
by, a wake of runners with decreasing speed is observed (Fig.
2D, state Sp). In about 40 or 50 seconds the system relaxes
towards a situation of normal walking on a pedestrian street,
eventually perturbed by lonely runners jogging at medium
speed (Fig. 2E, state Sg). In summary, depending on the
instant of the race, the PDF of the x-velocity displays peaks
of different widths at four distinct positions corresponding
to groups of people with different desired speeds, which is
relevant for the forthcoming analysis. Finally, two minutes
after the beginning of the race, four extra tamed bell-oxen run
along the path with the purpose of guiding a possible delayed
bull to the bullring.

Results

Time evolution of macroscopic observables. We start by

analysing several macroscopic quantities averaged over all

the n;(t) pedestrians present in each time frame (¢). In par-
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(8, 22), P; is the local crowd pressure P; = p;Var(v;, knn)
computed with the variance of the velocity over the k = 5
nearest neighbors for each pedestrian j (which are the same
used to calculate the individual densities as explained in Mate-
rials and Methods). In Fig. 3 we display the time evolution of
these variables only for the region just after the corner (similar
results are obtained at the middle of the straight street). Inter-
estingly, all quantities present a remarkable growth when the
first bull enters in the field of view (defined as t = 0) followed
by a relaxation that is rather quick for density and pressure.
The relaxation seems to be slower for the case of velocity:
even well after the passage of the last bull of the first group
(second vertical dashed line) it seems that there is a wake
of people running quite fast following the bulls toward the
bullring. The passage of the later four tamed bell-oxen (second
pair of vertical dashed lines) also displays a small growth of
the velocity and pressure values. The low densities at which
this last event occurs evidences that it is not appealing to
runners. The values reported in Fig. 3B clearly correlate
with the occurrence of the four last states described in Fig. 2
(Sp to Sg). State Sa (corresponding to normal walking and
people waiting) took place several minutes before and is not

and the mean

pedestrian pressure < P > (t) = Inspired in
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Fig. 3. Time series measured in the region after the corner. A: Mean density; B: Mean velocities (v,v4,|vy |). The states of the system Sp to Sg identified in Fig.2 are
indicated in purple. The two pairs of vertical red lines indicate the passage of the first 12 bulls and the later 4 tamed bell-oxen. C: Mean pedestrian pressure. Events of falling
runners are indicated with vertical color lines, the same color indicates correlated fallings. The inset corresponds to the passage of the bulls and the 2 seconds before it.

included in these time series. The mean of the absolute value
of the y-component of the velocity displayed in Fig. 3B, which
captures the occurrence of lateral movements, also presents a

maximum when the bulls pass through the analyzed region.

This feature correlates with a well known runner strategy that
consists on stepping aside when they are not able to keep up
the bulls pace.

Beyond all the features described above, the most striking
behavior of the bull-run in the context of pedestrian dynamics
is that the speed and density increase simultaneously, in clear
contrast with the traditional fundamental diagrams reported in
the literature. Therefore, we further look into this phenomenon
by representing the speed-density relation of the averaged
observables (Fig. 4), keeping the time information in the color
code of the curve. Measurements at both locations along the
street reveal similar behaviors. The initial state (Sg) can be
identified at the beginning as a dark blue curve in the density
range p € (0.4,0.6) m~? and mean speed around < v >~ 0.3
m/s. As explained, this corresponds to runners waiting for
the bulls at a fixed positions and occasionally jogging toward
another location. As bulls come closer (state S¢), the mean
speed increases up to a maximum (around 4 m/s) at which the
density also reaches its highest value (around 1 pedestrian per
square meter). After this, the system relaxes towards a normal
walking situation with mean speed around < v >~ 1 m/s,
perturbed only when the second 4-bull pack passes displaying
a velocity peak at lower densities. We emphasize that only
pedestrian data were used for computing these quantities.

Despite the complicated dynamics, if we look only at the
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speed-density relation, it is evident that the general rule of
decreasing speed when the pedestrian density increases, is
not fulfilled. Noteworthy, a monotonically decreasing speed-
density relation has been consistently observed in dozens of
different scenarios, including competitive situations (8, 22).
Therefore, as far as we know, this is the first speed-density
relation that seems to deviate from the general rule. Of course,
several differences can be outlined between the bull-run, and
most pedestrian systems. The first one is that in this case, the
process is non-stationary as the irruption of bulls introduces
a big perturbation in the system. Another one concerns the
willingness of pedestrians to run in front of the bulls. Finally,
it should be also noted that, if we consider the whole process,
a wide range of desired velocities are present in the system.
Therefore, in the following section, we investigate this problem
by analysing the speed-density relation from a microscopic
point of view.

Untangling the San Fermin speed-density relation. In Fig. 5A,
we represent with gray dots the values of velocity versus density,
as calculated at the individual runner level (see Materials and
methods) in all the frames registered at both street locations,
as indicated in Fig. 1, and including those in the state Sa
(which were not present in the time series). Contrary to the
observation made in the mean speed-density diagram for states
Sp to Sk (Fig. 4), when including state Sa the data cloud
seems to suggest a reduction of the velocity as the density
increases. Also, it is interesting to note that the points cluster
in two overlapping but well differentiated groups: one for
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Fig. 4. Mean speed-density diagram. A: In the middle of the straight street. B: In the
region “after the corner”. The time evolution is encoded by colors as indicated in the
colorbars.
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Fig. 5. Microscopic speed-density data points. A: Gray dots represent all pedestrian
data obtained from the whole race for the two recorded locations. Solid colors, three
examples of individual pedestrian trajectories in the speed-density space. The dashed
lines and the m value in their corresponding color display the slope of the principal
component vector for each trajectory. B: Speed-density data for pedestrian showing
normal behavior (i.e. m € [—1,0]) and the corresponding speed-density curves
obtained by computing the moving average of the data when grouped according to
its speed at minimum density as indicated in the legend. C: Speed-density data
for pedestrian showing atypical behavior (i.e. m € [1, 10]) and the corresponding
speed-density curves obtained as moving average the data, when classified according
to its speed at minimum density as indicated in the legend. D: Speed-density data
for pedestrian showing extreme behavior (i.e. |[m| > 10) and the corresponding
speed-density curves obtained by performing a moving average of the data when
classified according to its density at minimum velocity as indicated in the legend.

low densities (p < 2 m™?2) where the velocities span from
0 to 7 m/s that, in Fig. 5A, appears as a vertical cloud of
points; and the other for high densities (p > 2 m™?2) where
the velocities are always smaller than 1.5 m/s and in Fig.
5A appears as a cloud of points with an envelope that has a
slightly decreasing slope. There is a depleted region in the
speed-density plane: runners struggle to reach velocities above
1.5 m/s when p > 2 m™2. Interestingly, within all the data
points represented in Fig. 5A; we can distinguish very different
pedestrian behaviors depending on the runner analyzed and the
specific state of the race as described above. As an example, in
Fig. 5A we show three characteristic trajectories in the speed-
density space (each corresponds to a different pedestrian).
Among the trajectories, we can distinguish a “standard” one
occurring at high densities in which the speed reduces as the
density increases. Nevertheless, there are other (less common)
trajectories where we observe a wide range of speed values for
the same or similar (low) densities. This behavior is a piece of
clear evidence that pedestrians may change their desired speed
with time. For example, pedestrians waiting for the bulls have
zero desired speed and, as the bulls come closer, they begin
to run rising the desired speed up to the maximum.

To classify the different behaviors, we perform a principal
component analysis (PCA) for each trajectory in the speed-
density space and use the slope (m) of the first direction vector
as a classification parameter. This direction is the one that
maximizes the variance of the data (24). Examples of these
vectors are shown in Fig. 5A as dashed lines along with their
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slope values. Then, we choose three groups of pedestrians:
(1) pedestrians with m € [—1, 0] are said to display “normal
behavior” since the speed decreases when the density grows;
(2) pedestrians showing m € [1,10] are considered to be in an
“atypical” scenario because the speed increases with increasing
density; (3) finally, when |m| > 10 we have pedestrians in an
“extreme condition” as there is an important variation of speed
for a rather constant density value.

Next, in Figs. 5B,C,D, we represent the data points of
the speed-density relation that correspond to each class (nor-
mal, atypical and extreme, respectively). Figure 5B reveals
that almost all data in the speed-density relation for which
p > 2 m 2 correspond to pedestrians displaying normal
behavior. On the contrary, a small portion of the data ob-
tained for small values of p corresponds to this class of motion.
Considering only pedestrians displaying normal behavior, we
group individual trajectories according to the speed v at their
minimum density (this can be seen as an approximation of
the free speed for each given trajectory). Then, we implement
a moving average of the data corresponding to each subgroup
obtaining the results represented in the same Fig. 5B. In most
cases, the relation is consistent with the traditional negative
slope encountered in the literature. However, as the free speed
values increase, it is more likely to find almost horizontal
curves indicating a constant speed independent of the density.
It is reasonable to think that for high competitiveness, as
the moving threat approaches, runners want to maintain the
maximum speed no matter the density. Also, it is interesting
to note that the curves corresponding to 0 < vo < 1 m/s and
1 <wvo <2 m/s are clearly distinguishable when the density
is smaller than 2 m~2, but coincide for higher densities. This
feature -already reported for pedestrian dynamics (7, 16), and
in a system involving cars and lorries (25)- suggests that the
desired speed has a crucial role in the dynamics observed in
dilute conditions, but it becomes less relevant as the density
increases. Although our data at high density correspond to
state Sa (people with slow desired velocity), in other systems
the zone of high density and low speed could display a par-
ticular regime of people pushing each other that can cause
instabilities, as observed in experiments (22, 26) and turbulent
flows as reported for crowd catastrophes (8, 27).

In Fig. 5C we show a similar analysis to the one imple-
mented for normal conditions, but for the atypical condition.
In this case, the cloud of gray dots shows that the atypi-
cal behavior always corresponds to situations of low density
(p < 2m™?). Again, if we group runners according to their
speeds vp at minimum density, we observe a consistent set of
features for instance, that the curves display positive slopes
and the separation between them (with the only exception of
the two obtained for the smallest values of vg). All these char-
acteristics, together with the weak dependence of the speed
on the density observed for low density values and high de-
sired speeds shown in Fig. 5B, strongly suggest that the only
parameter governing the runners behavior in dilute conditions
is their desired speed.

Finally, the extreme scenario of pedestrians displaying
|m| > 10 are, as expected, observed in the region of p < 2m™?
(Fig. 5D). In this case, as trajectories are almost vertical, the
moving average is computed along the speed axes, grouping
trajectories depending on the value of their minimum density.
As in the atypical scenario described above, the observed be-
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havior would correspond to pedestrians changing their desired
speed for near-constant density values. Nevertheless, the fact
that the slopes in the speed-density relation reduce as the
initial density augments, suggests that pedestrians ability to
reach very high velocities diminishes as the density grows.
Indeed, this result supports the previously mentioned idea
of the existence of a inaccessible region in the speed-density
diagram (speeds above 1.5 m/s and p > 2 m™?).

The inaccessible region in the speed-density relation. In this
section we delve into the existence of the inaccessible region of
the speed-density space. The question is whether the absence
of data for speeds above 1.5 m/s and p > 2 m™2 has a psycho-
logical reason (i.e. people voluntarily decide to avoid running
at high densities); or else, if there is any physical constraint
that prevents the entry into this area of the parameter space.
In order to shed light on this we have carefully analyzed the
falls of the runners, because we have realized that a remarkable
proportion of these incidents coincide with the passage of the
bulls (which is the situation of higher speed and density).

Indeed, the events with multiple falling people have
paramount importance because they can trigger massive pile-
ups that may cause a large amount of casualties. Several falls
involving a large number of persons have occurred in previous
years, mainly at the narrowest part of the path (the entrance
of the bullring), as in 1957 (28) and 1977 (29), or more recently
in 2013 (30). Although these big pile-ups are sporadic, single
falls or small-group falls are more frequent, and some instances
were seen in our recordings. In particular, we observed a total
of 20 people falling, 13 on the first day, and 7 on the second
day. All of them took place during the passage of the bulls,
coinciding with a scenario of high average density, velocity
and crowd pressure, as shown with vertical colored lines in
Fig. 3C for day 2 (the same occurs for day 1). This seems a
piece of new evidence in favor of the hypothesis of Helbing et
al (8) who proposed that the crowd pressure can be correlated
with the probability of falling.

Indeed, it is natural to assume that the first falling and
the consecutive ones will occur with increasing probability
when augmenting both, the crowd speed variance and density.
Less available space can cause accidental physical contact of
runners, which may affect their motion and trigger their falling.
Therefore, the probability of falling in the bull-run will vary
drastically over time, being only significant in the transition
between states Sc and Sp coinciding with the bulls passage.
But not only this, also the falling probability will also depend
on, for example, the occurrence of a previous fall, i.e. the
presence of a runner on the floor. Indeed, it is interesting to
note that only 6 falls were independent (uncorrelated) whereas
14 of them belonged to a small-group fall. Although our sample
size is small, we estimate a falling probability by counting the
ratio between the number of falls and the number of runners
between the first and last of the 12-pack bulls. If we include
runners from the frame in which the head of the first bull exits
the FOV to the frame when the tail of the last bull enters the
FOV, we counted 97 runners (both days combined). Thus,
the 20 observed falls lead to a falling probability of about
0.21. Note that this value might be likely an overestimation.
If we consider instead the interval between the entrance of
the first bull in the FOV to the exit of the last one, the fall
probability would be 0.08. The data presented in Fig. 6 (blue)
corresponds to this last computation.
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Fig. 6. Microscopic speed-density data for pedestrians identified at the time of the
bulls passage. For each pedestrian, two points are represented, one for his/her
maximum velocity and another for his/her maximum local density. Red and blue dots
represent data for pedestrians that fall and do not fall, respectively, as indicated in the
legend. In the case of falling, the data belongs to the trajectories before the falling
event. Red and blue solid lines represent the moving averages along the speed axis
computed for each case.

In order to decide if there is any relationship between
the falling events and the inaccessible region in the speed-
density diagram, in Fig. 6 we compare the microscopic speed-
density relations for the falling pedestrians with the non-
falling pedestrians. For this comparison, only the data of
non-falling pedestrians that are in the videos during the falling
events (i.e. when the bulls cross through the field of view)
are considered. In addition, given that falling events are
probably related with extreme values of either speed or density,
we only draw in the plot two points for each runner: one
represents the pedestrian velocity when the density at the
pedestrian location is maximum; the other, the density at the
pedestrian location corresponding to the maximum velocity
of that particular pedestrian. Then, we compute the moving
averages of each group of data separately (taking the speed
axis as the independent variable), evidencing a clear shift
towards higher densities for the case of pedestrians that fall.
We propose that the moving average line corresponding to
falling pedestrians could be seen as a boundary separating
zones of physically allowed speed-densities from another zone
in which the pedestrian system would collapse because of the
occurrence of falls. Indeed, this hypothesis is supported by
the fact that the position of this vertical line seems to coincide
with the density and velocity values above which the density
of points in the global microscopic speed-density relation is
dramatically reduced (Fig. 5A).

Another strong argument for the existence of an inaccessible
region in the speed-density diagram can be put forward from
independent bio-mechanical arguments if we consider that the
higher the runner speed, the more available space is needed to
take a step. Indeed, the relation between the runners speed
and their stride length (Ls) has been reported in Ref. (31—
33). These studies show that the stride length increases with
speed as shown in the inset of Fig. 7. The maximum local
density p; at which a pedestrian can make a stride Ls can be
estimated as p; = 1/(Ls We), with W, the effective runner
width (see SI Appendix, Fig. S1). Then, using Ref. (31—
33), we can obtain the minimum space (maximum density)
required by runners to take a step depending on their speed
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Fig. 7. Theoretical limit in the speed-density diagram given by the bio-mechanical
data of the stride length of runners required for a given speed (see text). Reported
data correspond to Zrenner et al. (31), Nummela et al. (32) and, Yan and Jin (33).

(see solid lines in Fig. 7). In other words, these curves separate
physically accessible from inaccessible regions in the speed-
density diagram. Interestingly, the theoretical limit obtained
is close to the empirical boundary marking the zone of the
diagram where runners are at a high risk of falling, as shown
in Fig. 6.

Encompassing macroscopic and microscopic behavior. After
having identified the different type of individual behaviors
leading to the microscopic speed-density diagram shown in
Fig. 5, we are in a position to explain the origin of the
counterintuitive macroscopic speed-density plots displayed in
Fig. 4. To this end, knowing the type of individual behavior
predominating at each moment becomes crucial. For this
reason, in SI Appendix, Fig. S2, we report the temporal
evolution of the number of pedestrians that belong to the
three different types of behavior (normal, atypical and extreme)
together with the different stages of the race depicted in Fig. 2.
We further filter these signals considering normal behavior only
for pedestrians with v < 1.7 m/s and v > 1.7 m/s in the other
two cases. Clearly, before the approach of the bulls (stage Sg)
pedestrians behave normally (m € [—1,0]), a pattern that is
dramatically altered when the animals arrive to the field of
view. At this moment (stage Sc), the number of pedestrians
behaving normally goes to zero and there is a peak of people
showing atypical and extreme behavior. During the next 50
seconds or so (stage Sp), there is a gradual relaxation of the
number of atypical and extreme runners accompanied by a
growth in the number of normal pedestrians. After about
50 seconds (stage Sg), the main observed behavior is the
normal one, maybe with a small alteration at approximately
100 seconds, when the second pack of tamed bell-oxen passes
through the analyzed region. Note also that, for the high
density and non-competitive condition of the stage Sa (not
shown in the graph as it occurs long before the arrival of the
bulls), all the individual data fall in the region corresponding
to normal condition where the speed reduces with the density
for p > 2 m~? (inset of SI Appendix, Fig. S2).

Overall, we observe normal behavior (i.e. m € [—1,0])
in most situations with the exception of the time at which
the bulls arrive and the 40-50 seconds thereafter. At these
stages, the runners display either atypical behavior or extreme
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one, coinciding with the positive correlation of the average
velocity and the macroscopic density shown in Fig. 4. If we
consider the presence of the bulls as a perturbation similar
to the one studied by Nicolas et al. (34), the runners clearly
anticipate it and start running. Moreover, the fact that the
bulls occupy a big fraction of the available area of the street
and the willingness of runners to approach the bulls, causes a
sudden increase in the density. In this sense, we can state that
both, pedestrian interactions and the special nature of the
perturbation triggering their motion, determine the observed
dynamics.

Discussion

In this work, we have shown that the speed-density relation
in the San Fermin festival does not correspond to any of the
fundamental diagrams reported so far for pedestrians in normal
or competitive conditions. Indeed, the increase of the average
velocity with the systems’ average density is at odds with
established rules on pedestrian dynamics. Apart from the fact
that the running of the bulls is a time-dependent process, we
have revealed that the key aspect behind this unusual feature
is the variety of ways in which people behave.

Based on the results in the previous sections, we put for-
ward the following explanation for the observed “bull-run”
fundamental diagram:

o Instead of a single speed-density relation, there exist many
curves which correspond to a broad range of desired speeds.
Indeed, as the desired speed grows the curves become flatter
for a range of small densities (Fig. 5B). This can be
explained if one assumes that runners that are at maximum
risk have a very high desired speed no matter the density.

e The counterintuitive behavior of increasing speed with
increasing density would reflect pedestrians changing between
different curves corresponding to different desired speeds. It
shows that an important number of pedestrians wait for the
arrival of the bulls and, at that moment they increase their
desired speed, leading to a behavior as the one shown in Fig.
5C and D.

e For very fast runners, high local densities increase the
danger of falls, a feature that can be rationalized in terms of
the stride length dependence on the speed. Therefore, it is
reasonable to assume that a physical boundary exists for high
speeds and high densities. The red line in Fig.6 and curves on
Fig.7 can give a qualitative idea of the position of this
boundary in the speed-density diagram.

In Fig. 8A we sketch the different speed-density relations
that have been identified. The curves represent particular
cases of the Kladek-Newell-Weidmann formula (1, 3, 35), an
analytical expression having the flexibility to fit observed
speed-density diagrams (see Materials and methods). Note
that our proposal suggests that the curves corresponding to
the highest desired velocities drop to a speed equal to zero for
high densities, illustrating the collapse of the system that can
be expected when runners try to run too fast at such crowded
conditions. Moreover, the curve for vg = 7 m/s represents
a part of the boundary between accessible and inaccessible
areas in the speed-density diagram. The lower vo curves try to
reproduce the experimental ones shown in Fig.5B. The curve
for vo = 2 m/s represents an enveloping curve of the data
points displayed as a gray cloud in Fig.5A and Fig.7. Also, it

Parisi et al.

7 7
@5 @5
Ea E4
] o
g° g3
» 2 32
1 1
0 0 ‘
0 2 4 6 8 0 2 4 6 8
Density (1 /m2) Density (1 /m2)

Fig. 8. Hypothetical high-speed fundamental diagram. A: Possible speed-density
curves for different desired speeds vo = v(p = 0) (see eq.2). B: Proposed state
diagram with, at least, three different regimes.

marks the lower boundary of the accessible-inaccessible limit,
coinciding with the curve of Zrenner et al. in Fig.7. The limit
vo = 0 m/s means that if all pedestrians had zero desired
speed, the crowd would not move no matter the density.

Regardless of the particular shape of the curves for the
various desired speeds, the combination of them will lead to a
generalized speed-density space similar to the one sketched in
Fig. 8B. In there, different regions can be distinguished: (i)
a fleeing region for low densities in which pedestrians would
be able to change their desired velocity and jump between
different curves; (ii) a inaccessible region for high velocities and
densities at which pedestrians would have a high probability
of falling; and (iii) a normal region for pedestrians with low
desired speeds where the speed reduces with increasing density
as usually observed in steady state crowds. Note that in this
region walking pedestrians coexist with those that wanted to
run but suffer a fall. This degeneration could be broken if we
include the desired speed as a third state variable, which in
the case of a falling pedestrian, can be approximated by the
actual speed at which the falling begins.

In order to test the above explanation of the peculiar speed-
density relation observed in Fig. 4, we carried out simulations
for states S¢ and Sp. To this end, we used the contractile
particle model (36), which has been shown to reproduce the
experimental speed-density data for pedestrian systems under
normal conditions. Except for the constant desired velocities,
all the other parameters of the model are set in the range of
those reported in Ref. (36). For a description of this model
along with its parameters see the SI Appendix.

The main new aspect that we introduce in the simulations
is the time-dependent nature of the desired velocities, which
depend on the distance to the bulls. The simulation area has
6 m in width and 18 m in length (see Appendix SI, Fig. S3).
Initially, a set of no = 40 waiting agents are distributed uni-
formly within this area with desired speed vo = 0 m/s. Three
seconds after the simulation starts, a pack of 10 bulls enters
the simulation area at a fixed speed vy = 6 m/s. Around the
bull pack, a new group of n; = 20 agents enter the simulation
area (this kind of increase in the number of runners was ob-
served in our data, see Appendix SI, Fig. S4, and Movies S2
and S3) and its desired velocities are in the range vy € (4.8, 6)
m/s. Each of the ng waiting particles activate (i.e., switch its
own vg to a positive value) when the first bull particle is at a
distance (in the x-direction) of 9 m from its position. At that
moment, the desired speed of the waiting particle changes to
a random value v € (4.8,7.2) m/s. Agents behind the bulls
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Fig. 9. Simulation results of states Sc and Sp. A: Individual speed-density data.
B: Average speed and density in each time frame. The time evolution is encoded in
color.

slow down changing the desired speed linearly with time until
it reaches a walking value in the range vo € (0.75,2.25) m/s
at about 40 s since the simulation started.

The results of the simulations shown in Fig.9 reproduce the
same kind of dynamics as observed in the real system. Figure
9A displays microscopic information of local density and speed.
If we compared this cloud of point with the one in Fig.7 (or
Fig.5A) we can observe the equivalent vertical development
of the data at low-density corresponding to the change of the
desired velocities with time. In Fig. 9B, the time evolution of
the mean speed and density qualitatively matches the results
observed in the San Fermin system displayed in Fig. 4 in which
the mean speed and density increase simultaneously. It should
be noted that the simple model used, does not consider either
falls, or avoidance mechanisms. However, the inaccessible
region of the speed-density diagram is apparent.

In summary, after recording and analysing a real and em-
blematic pedestrian system in which people display several
states of behavior including high-speed fleeing from a moving
threat, we observed for the first time a positive correlation
between speed and density which can be explained in terms
of time-dependent desired speed, which is determined by the
bulls presence. Furthermore, using this new information we
postulate a generalization of the traditional fundamental dia-
gram of pedestrian dynamics that encompasses the different
behaviors observed.

Materials and methods

Image acquisition and processing. The video camera used
was a FLIR DUO PRO R 640 45°FOV and it was placed at
approximately 15 m over the street floor. Visible and infrared
images were taken, but we only used the visible channel that
has a resolution of 3840 x 2160 pixels and a frame rate of 30
fps (time interval dt = 1/30 s). Each image was reduced to
960 x 540 pixels and further cropped in order to cut-off walls
and buildings from the image, leaving a final useful image with
bulls and pedestrians of about 960 x 350 pixels. Also the time
resolution was reduced to dt = 4/30 s = 0.13 s when analyzing
the images.

The images were processed semi-automatically. For this,
we developed an ad-hoc software that allows the users to label
in subsequent frames each pedestrian head by clicking with
the computer mouse on the image and correct it if necessary.
The software can go forward and backward along the recording
taking one frame out of every four, effectively reducing the
frame rate to dt = 4/30 s. The main source of error in the

pedestrian location is the size of their heads and the height
of people. We estimated that this error was about 0.15 m,
that is reduced to about 0.12 m with smoothing (see below).
Once the positions of all runners and bulls were obtained,
they were corrected for the lens distortion using the function
"undistortPoints" of OpenCV library (37). We assumed no
tangential distortion on the lens and determined the quadratic
radial distortion coefficient empirically, using as reference
known straight lines in the picture.

Finally, in order to reduce acquisition fluctuations, each
trajectory ;(t) and y;(t) are smoothed by interpolating them
with a generalized regression neural network (GRNN) (38)
with spread value o = 1.

It must be noted that because of the zenithal camera po-
sition, the distance to the people, and the resolution used,
the actual identity of each runner is preserved. The "Comité
de Etica de la Investigacién de la Universidad de Navarra'
(Research Ethics Committee of the University of Navarra) has
assessed this manuscript and has found no ethical objections.

Microscopic Velocity and Density Calculation. From the z;(t),

yi(t) positions, the velocities were computed as vz (t) =

x;(t)—x;(t—0.13 s _ yi(t)—y;(t—0.13 s
= 0.1(33 : and ’in(t)— = g.l(Bs :

as v(t) = /v2(t) + v2(1).

The local density is calculated by means of the non-
parametric k-nearest neighbors (k-nn) method already con-
sidered for similar systems (39, 40). This method allows
computation of the density at any arbitrary point (z,y) in the
space. Tt relies on measuring the distance to the k*" nearest
neighbor (di) of the point (z,y). In our case, we choose the
points in space coinciding with each runner ¢, in consequence,
the first neighbor of the space point (z,y) is (x:,y:) being at
zero distance. Then, the density is computed as p; =

, and the speed

w d2
(see SI Appendix, Fig. S5). We took k = 5. If the circle cff
radius di lies out of the boundary, a correction is made by
subtracting the portion of the circle area Aoyt lying outside
the image (see SI Appendix, Fig. S5), so the density reads:

k—1
_—. 1
ﬂd%—AOUT [}

pi =

It must be noted that this definition also works when one or
more of the k-nn points correspond to a bull.

We compare this method for calculating local densities with
another considering the Voronoi area for each particle (41)
and, for k = 5, the differences between the two methods are
less than 0.35 %.

Kladek-Newell-Weidmann Pedestrian Fundamental Diagram.
The curves of the generalized pedestrian fundamental diagram
of Fig. 8 have the functional form of the Kladek-Newell-
Weidmann formula, as stated in Ref. (1, 3, 35).
v(p) = vo(1 — e *5 " mmar), 2
where g and pmaz are constants; in particular, ppaq is the
density at which the speed drops to zero. The particular values
used for curves in Fig. 8 are shown in SI Appendix, Table S1.

Data Availability. All study data are included in the article
and/or SI Appendix.
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