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a b s t r a c t 

In nonlinear dynamics, and to a lesser extent in other fields, a widely used measure of

complexity is the Permutation Entropy. But there is still no known method to determine

the accuracy of this measure. There has been little research on the statistical properties of

this quantity that characterize time series. The literature describes some resampling meth- 

ods of quantities used in nonlinear dynamics - as the largest Lyapunov exponent - but

these seems to fail. In this contribution, we propose a parametric bootstrap methodology

using a symbolic representation of the time series to obtain the distribution of the Permu- 

tation Entropy estimator. We perform several time series simulations given by well-known

stochastic processes: the 1/ f α noise family, and show in each case that the proposed accu- 

racy measure is as efficient as the one obtained by the frequentist approach of repeating

the experiment. The complexity of brain electrical activity, measured by the Permutation

Entropy, has been extensively used in epilepsy research for detection in dynamical changes

in electroencephalogram (EEG) signal with no consideration of the variability of this com- 

plexity measure. An application of the parametric bootstrap methodology is used to com- 

pare normal and pre-ictal EEG signals.

 

 

 

 

 

 

1. Introduction

In 2002, Bandt and Pompe introduced a measure of complexity for time series [1] named permutation entropy (PE). It

is an information entropy [2] that takes account of the time evolution of the time series, in contrast with other prominent

information entropies as the Shannon entropy [3] . Its computation is fast, requires not too long time series [4] , it is robust

against noise [5] and distributional assumptions of the time series [6] . This measure has been widely used in non-linear

dynamics [7–11] , and to a lesser extent in Stochastic Processes [12–14] , among others. It has also had a great impact on

such different and important areas of applied science and engineering as varied as Mechanics Engineering [15,16] , Epilepsy
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[17,18] , Anesthesia [19] , Cardiology [20,21] , Finance [22] , Climate Change [23] . Also a book about Permutation Complexity

has been published [24] . 

Since its publication and up to the end of 2016, the Bandt and Pompe seminal work [1] has been cited in 789 papers,

according Scopus bibliographic database, and the evolution of the cites seems to indicate that it will be increasing within

time. All these facts made an investigation of PE from the statistic point of view an important issue. 

There has been little research, up to our knowledge, on the statistical properties of the quantities used in nonlinear

dynamics to characterize time series. This lack of research may be due the lack of distributional theory of these quantities,

yielding resampling techniques as the most powerful tool to overcome this task. Perhaps one exception to this is the research

on the distribution of the largest Lyapunov exponent and the correlation dimension [25] . In [26] a methodology to calculate

the empirical distributions of Lyapunov exponents based on a traditional bootstrapping technique is presented, providing a

formal test of chaos under the null hypothesis. However, in [27] it is shown that the previously bootstrap approach seems

to fail to provide reliable bounds for the estimates of the Lyapunov’s exponents, and conclude that the traditional bootstrap

cannot be applied for estimating multiplicative ergodic statistics. In [28] , a moving blocks bootstrap procedure is used to

detect a positive Lyapunov exponent in financial time series. However, the time series generated by moving block bootstrap

present artifacts which are caused by joining randomly selected blocks, so the serial dependence is preserved within, but

not between, the blocks. 

Regarding time series symbolic dynamics, in [29] the probabilities generated using the Bandt and Pompe methodology

are calculated analytically for Gaussian Processes for motiv length equal three, but they recognize that for larger lengths

this is not possible, and for that reason a computer based method is required to estimate the bias and variance in the PE

estimation. 

In this contribution we propose a different simulation method (i.e. parametric bootstrap) for estimating the bias, variance

and confidence intervals for the Permutation Entropy estimation, along with hypothesis testing, that consists in simulating

symbolic time series bootstrap samples that are thought to be produced by a probabilistic model with a fixed transition

probability extracted from the original time series. 

In order to show some results from our method we simulate a well known family of time series: the 1/ f α noise. We

compute bias, variance and confidence intervals for the Permutation Entropy of these time series according to the time series

length along with other parameters. In addition, an application of the parametric bootstrap methodology for hypothesis

testing is used to compare normal and pre-ictal EEG signals. 

The paper reads as follows: Section 2 shows a brief review of PE in order to present the estimator to be evaluated

using the bootstrap approach, Section 3 presents and explains the proposed parametric bootstrap, firstly a brief review of

the bootstrap scheme is done as an introduction to our method, then in Section 3.1 the core of this bootstrap approach is

presented, i.e. the probability transitions computation, and finally in Section 3.2 the algorithms to perform the parametric

bootstrap of PE is explained. Section 4 addresses the numerical simulation along with its results, in Section 5 an application

of the parametric bootstrap is used to compare normal and pre-ictal EEG signals and Section 6 is devoted to the conclusions

of this contribution. 

2. Permutation Entropy

In this Section, we briefly review the PE to make the article self-contained and accessible for a wider audience. 

Let { X t } t ∈ T be a realization of a data generator process in form of a real valued time series of length T ∈ N . A measure of

uncertainty about { X t } t ∈ T is the normalized Shannon entropy [3] ( 0 ≤ H ≤ 1 ), which is defined as: 

H[ P ] = S[ P ] /S max = 

{
−

N ∑ 

i =1

P i ln (P i ) 

}
/S max , (1)

where P i is a probability to be extracted from the time series, N is the cardinality of the P i set { p i } N 1 
, the denominator

S max = S[ P e ] = ln N is obtained by a uniform probability distribution P e = { P i = 1 /N, ∀ i = 1 , · · · , N} .
Bandt and Pompe proposed a symbolization technique to estimate P i and compute PE, ˆ H (m, τ ) . First, we recall that PE

has two tuning parameters, i.e. m the symbol length and τ the time delay. Within this paper, we set τ = 1 with no loss

of generality and it will be omitted, so we will use H = H(m ) for sake of simplicity. Let X m 

(t) = (x t , x t+1 , . . . , x t+ m −1 ) with

0 ≤ t ≤ T − m + 1 be a non-disjoint partition containing the vectors of real values of length m of the time series { X t } t ∈ T . Let

S m ≥ 3 the symmetric group of order m ! formed by all possible permutations of order m , πi = (i 1 , i 2 , . . . , i m 

) ∈ S m 

( i j � = i k ∀ j � = k

so every element in π i is unique). We will call an element π i in S m 

a symbol or a motiv as well. Then X m 

( t ) can be mapped

to a symbol π i in S m 

for a given but otherwise arbitrary t . The m real values X m 

(t) = (x t , x t+1 , . . . , x t+ m −1 ) are mapped onto

their rank. The rank function is defined as: 

R (x t+ n ) = 

m −1 ∑ 

k =0

1 (x t+ k ≤ x t+ n ) (2)

where 1 is the indicator function (i.e 1 (Z) = 1 if Z is true and 0 otherwise), x t+ n ∈ X m 

(t) with 0 ≤ n ≤ m − 1 and 1 ≤
R (x t+ n ) ≤ m . So the rank R (min (x t+ k )) = 1 and R (max (x t+ k )) = m . The complete alphabet is all the possible permutations



123

1 2 3

1
2

3

132

1 3 2

1
2

3

213

2 1 3

1
2

3

312

3 1 2

1
2

3

231

2 3 1

1
2

3

321

3 2 1

1
2

3

Fig. 1. All symbols for m = 3 are shown. With this rank permutation mapping one simply maps each value x i in X m ( t ) placing its rank R (x i ) ∈ { 1 , 2 , . . . , m } 
in chronological order to form π i in S m . The indexes of the vertical axis are fixed, ordered by amplitude (i.e ranks), and they are mapped onto the time axis.

For each pattern X 3 (t) = (x t , x t+1 , x t+2 ) , the resultant symbol can be obtained reading the labels in the horizontal axis from left to right (in chronological 

order).
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Fig. 2. Example of the calculation of the Permutation Entropy. (top) Time series X t = (4 , 7 , 9 , 10 , 6 , 11 , 3) . (middle) symbols π i generated from the time 

series using the Rank Permutation Mapping. (bottom) relative frequency of S m =3 elements for the exemplified time series, P(312) = 0 . 4 , P(123) = 0 . 4 and 

P(213) = 0 . 2 . 

 

 

 

 

 

 

 

 

of the ranks. Hence, any vector X m 

( t ) is uniquely mapped onto πi = ( R (x t ) , R (x t+1 ) , . . . , R (x t+ m −1 ) ) ∈ S m 

. With this Rank Per-

mutation Mapping one simply maps each value x i in X m 

( t ) placing its rank R (x i ) ∈ { 1 , 2 , . . . , m } in chronological order to

construct π i in S m 

. In Fig. 1 an illustrative drawing of this mapping for all the alternatives in m = 3 is presented. The in-

dexes of the vertical axis are fixed, ordered by amplitude (i.e ranks), and they are mapped onto the time axis. The resultant

symbol can be obtained reading the labels in the horizontal axis from left to right (in chronological order). This method is

used by Bandt [30] , Riedl et al. [4] and Bandt and Shiha [31] among others. For example, let us take the series with seven

values ( T = 7 ) used in [1] (see Fig. 2 , top), and motiv length m = 3 : 

X t = (4 , 7 , 9 , 10 , 6 , 11 , 3) (3)

X 3 (1) = (4 , 7 , 9) and X 3 (2) = (7 , 9 , 10) represents the permutation π = 123 since R (x 1 ) = 1 , R (x 2 ) = 2 , R (x 3 ) = 3 . X 3 (3) =
(9 , 10 , 6) and X 3 (4) = (6 , 11 , 3) correspond to the permutation π = 231 since R (x 1 ) = 2 , R (x 2 ) = 3 , R (x 3 ) = 1 (see Fig. 2 ,

middle). Using the rank permutation Mapping we compute P ( π i ) (see Fig. 2 , bottom), 

P (πi ) = 

∑ T −m +1 
l=1 1 (X m 

(l) has ordinal patter πi in S m 

) 

T − m + 1 

, (4) 

where 1 is the indicator function and i = 1 , . . . , m ! . Using these probabilities, ˆ H (m ) can be computed as, 

ˆ H (m ) = 

{
−

N ∑ 

i =1

P (πi ) ln (P (πi )) 

}
/S max , (5)



Fig. 3. Schematic diagram of the parametric bootstrap approach. An unknown probability model, � = �(P i j ) , gives an observed sequence S from which 

we estimate ˆ H , so the bootstrap approach suggest to estimate this model ˆ � = �( ̂ P i j ) and get the correspondent bootstrap samples S ∗ from which we 

estimate ˆ H 

∗ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where N = m ! is the order of the symmetric group S m 

and S max = ln (N) . 

3. The bootstrap approach

The bootstrap is a computer based method for assigning measures of accuracy to the estimates of the desired statistical

variables [32] . If H is an unknown characteristic of a model � , an estimator ˆ H can be derived from the sample generated

by � in a single experiment. A way to obtain the distribution of ˆ H is to repeat the experiment a large number of times

and approximate the distribution of ˆ H by the so obtained empirical distribution. In most practical situations, this method

is impossible because the experiment is not reproducible, or is unenforceable for cost reasons. The spirit of the bootstrap

methodology is to estimate the sampling distribution of a statistic (i.e. quantifier or a parameter estimator) from the data

at hand by analogy to the “thought experiment” that motivates the sampling distribution. 

Suppose that an unknown probability model � gives an observed data set X = { x t } nt=1 
by random sampling and let

ˆ θ�( X , T ) be the statistic of interest that estimates our true value θ = f (�) . Then with the observed data set X we produce

an estimate ˆ � . The trick is now to repeat the random sampling but with the estimate ˆ � giving bootstrap samples X 

∗ =
{ x ∗t } n t=1

and for each bootstrap sample we calculate ˆ θ ∗
ˆ �
( X 

∗
, n ) . Now we repeat the bootstrap sampling B times and the

distribution of ˆ θ ∗
�̂

( X 

∗
, n ) is the bootstrap estimator of the distribution of ˆ θ�( X , n ) . With this estimated distribution we can

also obtain the variance, the bias and the confidence intervals of our estimator. 

Formally, the bootstrap methodology is based in the plug-in principle [33] . The parameter of interest can be written as a

function of the probability model, θ = f (�) . As the probability model is unknown, the plug-in estimate of our parameter is

defined to be ˆ θ = f ( ̂  �) . So the bootstrap propose that we resample from this estimated probability model ˆ � that is chosen

to be close to � in some sense. 

If we have some information about � besides the data, the chosen 

ˆ � must contain this information. Suppose that we

know that the data X = { x t } nt=1 
comes from a certain process ruled by a probabilistic model � that depends on a finite

number of parameters � = { ξ} k 
i =1 

, so � = f ( �) . This parameters can be estimated in the traditional statistical parametric

approach as Maximum Likelihood getting ˆ � = { ̂  ξ} k 
i =1 

, and equivalently ˆ � = f 

(
ˆ ξ
)

. 

Now the bootstrap samples X 

∗ = { x ∗
1 
, x ∗

2 
. . . x ∗n } comes from a process ruled by a probabilistic model ˆ � ( Fig. 3 ). These

bootstrap samples emulates in every sense the original samples, including the correlation between the values. 

3.1. The transition probabilities of a symbol sequence 

As stated in Section 2 using the methodology proposed by Bandt and Pompe, the dynamics of a process { X t } t ∈ T with

X t ∈ R is represented by a m ! th finite state random process { S t } t∈ (T −m +1) with S t ∈ S m 

= { π1 , π2 . . . πm ! } for all possible

m ≥ 2. This realization of the symbolic sequence is thought to be produced by a probabilistic model with a fixed transition

probability P ij (i.e. the probability of moving from a symbol π i to a symbol π j for all 1 ≤ i ≤ m ! and 1 ≤ j ≤ m !) denoted

�( P ij ). 

As seen in Fig. 3 � = �(P i j ) , gives an observed sequence S from which we estimate ˆ H , so we need an estimation of

the ˆ P i j to estimate the model ˆ � = �( ̂  P i j ) in order to obtain bootstrap replications ˆ H 

∗. 

According to Bandt and Pompe [1] , the relative frequency 

ˆ P T (πi ) = 

n i 

T − m + 1 

(6)



 

 

 

 

 

 

 

 

 

 

 

is an estimate as good as possible for a finite series of values of P ( π i ), with n i the number of times the state π i is observed

up to time T − m + 1 . The sub-index T in 

ˆ P T (πi ) reinforces the notion of the dependence of the estimator on the length of

the series T . 

With the same spirit, we define the transition probabilities of the symbol sequence as: 

P i j = P (s t+1 = π j | s t = πi ) 1 ≤ i ≤ j ≤ m ! (7) 

And the estimator of P ij 

ˆ P i j 
T 

= 

{
n i j

ni
i f n i ≥ 0 

0 otherwise 
(8) 

where n ij is the number of transitions observed form π i to π j up to time T − m + 1 and n i the number of times the state

π i is observed up to time T − m + 1 . Note n i = 

ˆ P (πi )(T − m + 1) 

Then by the law of the total probability: 

P (π j ) = 

m ! ∑ 

i =1

P (πi ) P 
i j (9) 

so if we call P ( π ) to the (m!)-dimensional vector containing P ( π i ) in each coordinate (i.e P (π ) = (P (π1 ) , P (π2 ) , . . . , P (πm ! ) ),

then P ( π ) is determined by P ij , leading to the conclusion that the estimator ˆ P T (π ) is determined by the estimation of ˆ P 
i j 
T 

. 

3.2. Bootstrapping the Permutation Entropy 

The Permutation Entropy is defined in Eq. (1) , so because of the plug-in principle, our natural estimator is: 

ˆ H T = 

{
−

N ∑ 

i =1

ˆ P T (πi ) ln ( ̂  P T (πi )) 

}
/ln (m !) (10) 

In Section 3.1 we showed that the Permutation Entropy was completely defined by the transition probabilities P ij so we

can think of them as parameters of a probabilistic model � . 

Following the scheme in Fig. 3 we have: 

�
(
P i j 

)
−→ S = (s 1 , s 2 . . . , s T −m +1 ) −→ 

ˆ H T 

Our probabilistic model with unknown transition probabilities P ij gives the observed symbol sequence S , and with that

sequence the estimation of the Permutation Entropy is obtained. 

In the “bootstrap world”: 

ˆ � = �
(

ˆ P 
i j 
T 

)
−→ S ∗ = (s ∗

1 
, s ∗

2 
. . . , s ∗

T −m +1 ) −→ 

ˆ H 

∗
T 

ˆ � generates S ∗ by a simulation, giving the bootstrap replication 

ˆ H 

∗
T 

. We can repeat the simulation to get as many boot-

strap replications as affordable. 

Computing B bootstrap replication of the Permutation Entropy from a time series { X t } t ∈ T is simple: giv en a time series

of length T , choose a world length m and a time delay τ to do the mapping from { X t } t ∈ T to { S t } t∈ (T −m +1) as stated in

Section 2 . With this sequence: compute ˆ P T (πi ) , ( Eq. (6) ), ˆ P 
i j 
T 

( Eq. (8) ) and calculate ˆ H T ( Eq. (10) ). Then choose at random

with probability ˆ P T (π ) an initial state s ∗
1
(b) = πk and choose at random with probability ˆ P 

k j 
T 

(note that k is fixed with the

value of the previous state) the next simulated state s ∗
2 
(b) . Repeat this last step T − m + 1 times to obtain the simulation

S ∗(1 ) = (s ∗
1 
(1) , s ∗

2 
(1) . . . , s ∗

T −m +1 
(1)) . With this bootstrap replication of symbol sequence estimate ˆ H 

∗
T 
(b) ( Eq. (6) ).

For a more detailed reference see Algorithm 1 in Appendix A . 

Repeat the simulation of the sequence B times to obtain 

ˆ H 

∗
T 
(b) b = 1 . . . B . With the set ˆ H 

∗
T
(b) b = 1 . . . B we have the

bootstrap replications needed to estimate the standard deviation, the confidence intervals of ˆ H T , or the test presented in

the following section. 

Now, with the B obtained bootstrap replications of ˆ H 

∗
T 

: 

ˆ H 

∗
T
(1) , ˆ H 

∗
T
(2) . . . ˆ H 

∗
T 
(B ) 

The Bootstrap Standard Deviation of ˆ H 

∗
T 

is our estimation of the Standard Deviation of ˆ H T : 

ˆ σB ( ˆ H T ) = ˆ σ ( Ĥ 

∗
T ) (11) 

and is defined as 

ˆ σ ( ˆ H 

∗
T ) = 

√
1 

B − 1 

B ∑ 

i =1

(
ˆ H 

∗
T 
(i ) − ˆ H 

∗
T 
(•) 

)2
(12) 

where 

ˆ H 

∗
T (•) = 

1 

B 

B ∑ 

i =1

ˆ H 

∗
T (i ) (13)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We define the bootstrap bias of ˆ H 

∗
T 

as: 

Bias ( ˆ H 

∗
T ) = 

ˆ H 

∗
T (•) − ˆ H T (14)

Finally, the Mean Square Error (MSE) of an estimator: 

MSE ( ˆ H 

∗
T ) = V ar( ˆ H 

∗
T ) + Bias 2 ( ˆ H 

∗
T ) (15)

3.2.1. Confidence intervals 

The 1 − α Confidence Interval of H is defined by the percentiles of the bootstrap δ. For each bootstrap replicate ˆ H 

∗
T 
(b)

we compute the difference - δ∗( b ) - between that replication and the mean of all bootstrap replicates. Then we choose the

( α2 ) and the ( 1 − α
2 ) percentiles of the δ∗’s distribution and add them to the original estimate, ˆ H 

∗
T 
, correcting for the bias,

and the resulting (1 − α)100% confidence interval is: [
max (2 

ˆ H T − ˆ H 

∗
T (•) + δ∗

α
2 
, 0) , min (2 

ˆ H T − ˆ H 

∗
T (•) + δ∗

(1 − α
2 ) , 1) 

]
(16)

For a more detailed reference see Algorithm 2 in Appendix A . 

3.2.2. Hypothesis testing 

With this same spirit, a confidence interval for the difference between the Permutation Entropy of two different time

series can be made. In inferential statistics exists a direct relationship between confidence intervals and hypothesis testing.

A two-sided (1 − α) confidence interval in the difference between two measures can be used to determine if those two

measures are significantly different by only checking if the zero belongs to this particular interval. 

H 0 : 
 = H 1 − H 2 = 0 

If 0 / ∈ (1 − α)100% CI (
) then reject H 0 and 

H 1 � = H 2 

The procedure to perform this test is shown in Algorithm 3 in Appendix A . 

4. Numerical simulation

In order to show our proposed bootstrap in a very general time series, we simulate a well known dynamical system: the

1/ f α . All the series are simulated with different time span - T - in order to evaluate the statistical properties of ˆ H T according

to Eq. (10) . As stated before, a way to obtain the distribution of ˆ H is to repeat the experiment a large number of times

and approximate the distribution of ˆ H by the so obtained empirical distribution. While for real world experiments this

can be inapplicable, for simulated time series this can easily done by Monte Carlo Simulation. Once the n replications of
ˆ H T = { ˆ H T (1) , . . . , ˆ H T (n ) } is obtained the standard deviation is estimated by:

ˆ σ ( ˆ H T ) = 

√
1 

n − 1 

n ∑ 

i =1

(
ˆ H T (i ) − ˆ H T (•

)2
(17)

where 

ˆ H T (•) = 

1 

n 

n ∑ 

i =1

ˆ H T (i ) (18)

4.1. Experimental design 

1/ f α noises refers to a signal with spectral density S ( f ) with the form S( f ) = k 1 
f α

where k is a constant, α is the signal-

dependent parameter and f is frequency [34] . It is a stochastic model which seems to be ubiquitous in nature (see [34] and

the references within). We simulate 1/ f α noises with α = {−1 , 0 , 1 , 2 } . See Fig. 4 for an example of these noises. A white

noise process ( α = 0 ) would generate a curve with constant power in the spectrum. The case of α = 1 or pink noise is the

canonical case and of most interest as many of the values of α found in nature are very near to 1.0 [35–39] . A random walk

noise (Brownian Motion or red noise , α = 2 ) would show a (1/ f 2 ) distribution in S ( f ). In order to simulate this stochastic

process, the algorithm propose in [40] is used. 

For each α = {−1 , 0 , 1 , 2 } 10 0 0 replications were simulated for each T = { 60 , 100 , 120 , 400 , 600 , 2000 , 3600 , 5000 ,

10 , 0 0 0 , 20 , 0 0 0 , 50 , 0 0 0 } . ˆ H i (T , m ) for { i = 1 . . . 10 0 0 } along with ˆ σ ( ˆ H T ) are obtained for m = { 3 , 4 , 5 , 6 } . For each α =
{−1 , 0 , 1 , 2 } a single replication was simulated for each T = { 60 , 100 , 120 , 400 , 600 , 2000 , 3600 , 5000 , 10, 000, 20,

0 0 0, 50, 0 0 0}. In each case for this replication we implemented the Algorithm 1 to get 10 0 0 bootstrap replicates. ˆ H 

∗
i 
(T , m )

for { b = 1 . . . 10 0 0 } are obtained for m = { 3 , 4 , 5 , 6 } . For these bootstrap samples we analyze Bias, Standard Deviation and

MSE . 

As for each set of 10 0 0 bootstrap replicates we obtain a single confidence interval, we repeated this step 50 times to

obtain Table 1 that indicates the estimated confidence level of this method along with the mean amplitude of the interval. 
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Fig. 4. (top) realization for 1/ f k noises (T = 20 0 0), from left to right: k = −1 , k = 0 , k = 1 , k = 2 . (bottom) spectral density of the respective 1/ f k noises. 

Table 1

90% Confidence Intervals ( Eq. (16) ) for every symbol length m and power law parameter α. How many times the

real value of H (in fact we use the mean of ˆ H (T, m ) that is the best possible estimator) is lower than the Lower 

Bound - MissLeft - or higher than the Upper Bound - MissRight -. For white noise the confidence level is higher

than 90%, in fact is always accurate but for other values of α the overall confidence level is approximately

between 90% and 95%.

m α ˆ H (T, m ) MissLeft MissRight Mean amplitude

3 −1 0.995831848 0 0.04 0.00222

4 −1 0.989083439 0.02 0.04 0.00420

5 −1 0.983495069 0.04 0.04 0.0 050 0

6 −1 0.97547007 0.02 0 0.00555

3 0 0.99990292 0 0 0.0 0 057

4 0 0.999679839 0 0 0.0 0 080

5 0 0.998800463 0 0 0.00134

6 0 0.994503528 0 0 0.00235

3 1 0.991622896 0.02 0.02 0.00340

4 1 0.983385433 0.02 0.02 0.00493

5 1 0.97600538 0.02 0.04 0.00591

6 1 0.966355927 0 0.06 0.00657

3 2 0.943233315 0.08 0.06 0.00959

4 2 0.90634703 0.04 0.02 0.01273

5 2 0.878452628 0.02 0.02 0.01413

6 2 0.853327039 0.04 0.02 0.01482

 

 

 

 

 

 

 

 

 

 

 

4.2. Results 

We intend to show in our simulated experiment that the bootstrap distribution of the PE estimator is close in every

meaningful sense to the distribution obtained by the repetition of the original experiment (empirical distribution) when

the exact replication of the experiment can not be done. A comparison between the standard deviations of both bootstrap

replicates and the empirical distribution ( ̂  σB ( ˆ H T ) and ˆ σ ( ˆ H T ) respectively) for the stochastic processes is presented in Fig. 5 .

There are some discrepancies for low values of T but from a certain value T 0 , in all the cases of m , the standard deviation

coincides. In Fig. 6 it can be seen that for every m and α the bias of the bootstrap estimate tends to zero as T increases. So,

the estimator of the PE is an asymptotically unbiased estimator. With this and with the fact that σ also goes to zero as T

increases, the estimation seems to be Mean Square Consistent. Even more, for large values of T , the estimation is as efficient

as the estimation produced by the repetition of the experiment. In Fig. 7 and for an arbitrary value of α = 1 an for the

largest length of the simulated time series T = 50 , 0 0 0 , an histogram of the bootstrap estimator along with an histogram

of the simulated estimator are presented in different scale for every m . The similar shape between the histograms can be
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Fig. 5. Standard Deviation of ˆ H as T increases. A comparison between the standard deviations of ˆ H of both bootstrap replicates in red and simulated 

replicates in blue is shown. There are some discrepancies for low values of T but form a certain value T 0 , in all the cases of symbol length m and α, the

standard deviation coincide. As the bias goes to zero ( Fig. 6 ) along with the standard deviation the PE estimator seems to be a mean square consistent

estimator. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

appreciated, the difference in the location is due that the bootstrap samples depends on only one of the estimations of the

PE (that are random) but this does not affect the posterior inferential conclusions. 

For a more thorough exploration of the bootstrap estimator we have calculated fifty 90% Confidence Intervals and for ev-

ery m and every α we computed how many times the real value of H - in fact we use the mean of ˆ H (T , m ) (see Section 4.1 )

that is the best possible estimator - is outside the bounds of the confidence interval. Results are shown in Table 1 . For white

noise the confidence level is higher than 90% (in fact is always accurate) but for other values of α the overall confidence

level is approximately between 90% and 95%. 

5. Application: EEG data

To illustrate the proposed confidence intervals in real contexts we present how it can describe the uncertainty in the

Permutation Entropy estimation within one observation of Electroencephalogram (EEG) Data. More precisely, as a first prac-

tical application, we analyze four different sets of EEGs for healthy and epileptic patients that were previously analyzed by

Andrzejak et al. [41] (available at http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html) . The data consist

of 100 data segments (from which we choose 10 at random), whose length is 4097 data points with a sampling frequency

of 173.61 Hz, of brain activity for different groups and recording regions: surface EEG recordings from five healthy volun-

teers in an awake state with eyes open (Set A) and closed (Set B), intra-cranial EEG recordings from five epilepsy patients

during the seizure free interval from outside (Set C) and from within (Set D) the seizure generating area. Details about the

recording technique of these EEG data can be found in the original paper. 

http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html)


Fig. 6. The Bootstrap Bias for different values of α in function of T . It can be seen that for every symbol length m and α the bias of the bootstrap estimate

tends to zero as T increases. The PE estimator is an asymptotically unbiased estimator. As the standard deviation goes to zero ( Fig. 5 ) along with the bias

the PE estimator seems to be a mean square consistent estimator.

Fig. 7. For an arbitrary value of α = 1 an for the largest length of the simulated time series T = 50 , 0 0 0 , an histogram of the bootstrap estimator (Red) 

along with an histogram of the simulated estimator (Blue) are presented in different scales for every m . The similar shape between the histograms can be

appreciated, the difference in the location is due that the bootstrap samples depends on only one of the estimations of the PE (that are random) but this

does not affect the posterior inferential conclusions. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)



Fig. 8. The 90% Confidence Intervals for the 10 EEG signals of brain activity for different groups and recording regions: surface EEG recordings from

healthy volunteers in an awake state with eyes open (Set A) and closed (Set B), intra-cranial EEG recordings from epilepsy patients during the seizure free

interval from outside (Set C) and from within (Set D) the seizure generating area. It should be pointed out that the overlapping between intervals does

not necessarily means that there is no significant differences between the two Permutation Entropies. To reach that conclusion, an hypothesis test for the

difference must be made.

Fig. 9. Hypothesis Test for the difference in the Permutation Entropy of a time series. A test for the difference in the Permutation Entropy between the

EEG signals of healthy volunteers in an awake state with eyes open (Set A, in rows) and the EEG signals of healthy volunteers in an awake state with eyes

closed (Set B, in columns). In order to obtain an overall significance of 0.1 ( α = 0 . 1 ) for the 100 tests performed in the analysis, each individual test for 

the difference between the PE of a single EEG of the Set A and a single EEG of the Set B (each square) was conducted with a significance level of 0.001

( α = 0 . 001 ). The red squares mean that the individual test was rejected and there is a significant difference between the Permutation Entropies. On the 

other side green squares mean that the individual test was not rejected and there is no evidence for that difference. 8 individual tests were rejected out

of 100 indicating that there were differences between Set A and Set B, but 7 of these rejected tests belong to the same patient with eyes closed who may

have been affected by an external factor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

 

 

 

 

 

The problem of interest is to compare, via an inferential procedure, the PE of 4 different sets of EEG signals: EEG signals

of patients in an awake state with eyes open (Set A) and closed (Set B), intra-cranial EEG recordings from epilepsy patients

during the seizure free interval from outside (Set C) and from within (Set D) the seizure generating area. 

The classical approach to this problem is sampling several EEG signals of each type, and conduct a test of comparison

between means with the t -test if normality holds, or through a Mann Whitney–Wilcoxon test if no assumption of the dis-

tribution of the PE were made. Multiple comparisons can be made with an ANOVA and a posterior Tukey HSD test, or with



Fig. 10. The same analysis of the previous figure is extended to all the different types of patients. All the global tests indicates that there were differences

between different Sets, but between Set A and Set B the difference is mostly due a single patient (who may have been affected by an external factor)

and all EEG signals of those sets are different in every test to the EEG signals of Set C and Set D, except for one. Instead, between Set C and Set D the

differences between the individuals are distributed between significant and not significant.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the equivalent non-parametric test, the Kruskal–Wallis test by ranks. With this approach one can draw conclusions about

the relation between the means of the PE of the EEG signals of the different sets, but cannot compare the dynamics (via the

PE) between individual EEG signals of those different sets. With the bootstrap approach presented on this contribution, one

can establish if any EEG signal in a Set A, for example, is significantly different (in the PE) to any signal in Set B. And then

repeat this procedure between all the sets. We begin by constructing 90% Confidence Intervals for the PE of the 10 EEG sig-

nals of brain activity for different groups and recording regions ( Fig. 8 ) in order to visualize the location of the PE estimator

along with its variability. It should be pointed out that the overlapping between intervals does not necessarily means that

there is no significant differences between the two Permutation Entropies [42] . To reach that conclusion, an hypothesis test

for the difference must be made. 

Next we perform a test for the difference in the Permutation Entropy between the EEG signals of healthy volunteers in

an awake state with eyes open (Set A, in rows) and the EEG signals of healthy volunteers in an awake state with eyes closed

(Set B, in columns), see Fig. 9 . In order to obtain an overall significance of 0.1 ( α = 0 . 1 ) for the 100 tests performed in the

analysis, each individual test for the difference between the PE of a single EEG of the Set A and a single EEG of the Set

B (each square) was conducted with a significance level of 0.001 ( α = 0 . 001 ). 8 individual tests were rejected out of 100

indicating that there were differences between Set A and Set B, but 7 of these rejected tests belong to the same patient

with eyes closed who may have been affected by an external factor. 

In Fig. 10 the same analysis is extended to all the different types of patients. All the global tests indicates that there were

differences between different Sets, but between Set A and Set B the difference is mostly due a single patient (who may have

been affected by an external factor) and all EEG signals of those sets are different in every test to the EEG signals of Set C

and Set D, except for one. Instead, between Set C and Set D the differences between the individuals are distributed between

significant and not significant. 

6. Conclusion

The repetition of the “thought experiment” that produces the data to calculate the statistic ˆ H is the basis of obtaining

the distribution. The infinite repetition of this experiment would give the actual distribution, so a large number of this rep-

etitions should be the best estimator of the distribution of the statistic ˆ H . In real world applications is very often impossible

to repeat the experiment, so performing an analogy of this experiment using the data at hand is the purpose of bootstrap.

In many practical situations, there is a wish to compare the dynamics of two processes via the Permutation Entropy of

their time series. The question is: H 1 = H 2 ? This can not be answered with punctual estimators ( ̂  H 1 , ˆ H 2 ) because these are

continuous random variables and with probability 1 (i.e. always ) they are going to be different. The real question is if that

difference is statistically significant or not, and that only can be answered if a measure of variability exists for that continu-

ous random variable, ˆ 
 = 

ˆ H 1 − ˆ H 2 . There has not been, up to our best knowledge, this kind of variability measure that we

are proposing now. 

With the bootstrap estimator of the variance and bias that we present in this contribution, the PE is an asymptotically

unbiased estimator and seems to be Mean Square Consistent. Even more, for large values of T , the proposed accuracy mea-

sure is as efficient as the one obtained by the frequentist approach of repeating the experiment. 



 

 

 

 

 

 

In summary, we present a computer based methodology to obtain an accuracy measure for the estimation of the Permu-

tation Entropy ( ̂  H ). So far we found in the literature that only descriptive statistics are used to characterize this quantifier

and if the objective is to reach conclusions that extend beyond the raw data itself, there were no statistical inference method

at hand. Even a simple comparison between two random variables (as ˆ H ) cannot be made with some confidence without

a measure of variability of that variable. Our method paves the way to perform any inferential statistic involving the Per-

mutation Entropy or even any complexity measure that uses the Probability Function Distribution proposed by Bandt and

Pompe. 

Appendix A. Algorithms 

Algorithm 1 Algorithm for the parametric bootstrap for Permutation Entropy. 

1: T ← time series length 

2: set m 

3: set τ
4: compute ˆ P T (πi ) (Eq. (6)) from the actual time series 

5: compute ˆ H T (Eq. (10)) from the actual time series 

6: compute ˆ P 
i j 
T 

(Eq. (8)) from the actual time series 

7: b ← 1 

8: while b ≤ B do 

9: i ← 1 

10: s ∗
i 
(b) ← πk w.p. ˆ P T (π) {i. e. the initial state for the bth bootstrap replication}

11: while i ≤ T − m + 1 do 

12: s ∗
(i +1)

(b) ← πk w.p. ˆ P ik 
T 

(π) {i. e. the i th state for the bth bootstrap replication} 

13: i ← i + 1 

14: end while 

15: estimate ˆ P ∗(π) using S ∗(b) Ec. 7 

16: estimate ˆ H 

∗
T 
(b) using ˆ P ∗(π) and Ec. 11{i. e. the b bootstrap sample of ˆ H T .}

17: end while 

Algorithm 2 Algorithm for the confidence interval for Permutation Entropy. 

1: while b ≤ B do 

2: generate ˆ H 

∗
T 
(b) 

3: end while 

4: compute ˆ H 

∗
T 
(•) = 

1 
B 

∑ B 
i =1

ˆ H 

∗
T 
(i ) 

5: sort δ∗(b) = 

ˆ H 

∗
T 
(b) − ˆ H 

∗
T 
(•) in increasing order 

6: set confidence level 1 − α

7: compute δ∗
α
2

← 

{ 

δ∗
α
2

/ #

(
δ∗<δ α

2

)
B ≤ α

2

} 

{i. e. if B = 10 0 0 and α = 0 . 1 choose the 50 th element on the sorted δ∗ } 

8: compute 

δ∗
(1 − α

2 
)
← 

{ 

δ∗
(1 − α

2 
)

/ #

(
δ∗<δ

(1 − α
2

)

)
B ≤ 1 − α

2

} 

{i. e. if B = 10 0 0 and α = 0 . 1 choose the 950 th element on the sorted δ∗ } 

9: The lower bound of the confidence interval is 

max (2 ̂  H T − ˆ H 

∗
T 
(•) + δ∗

α
2
, 0) 

10: The upper bound of the confidence interval is 

min (2 ̂  H T − ˆ H 

∗
T 
(•) + δ∗

(1 − α
2 

)
, 1) 



Algorithm 3 Algorithm for the hypothesis testing for Permutation Entropy. 

1: compute ˆ H 1 T the PE of the 1 st time series 

2: compute ˆ H 2 T the PE of the 2 nd time series 

3: compute ˆ 
T = 

ˆ H 1 T − ˆ H 2 T 

4: while b ≤ B do 

5: generate ˆ H 1 
∗
T (b) the bootstrap replicate of the 1 st time series 

6: generate ˆ H 2 
∗
T (b) the bootstrap replicate of the 2 nd time series 

7: end while 

8: for i in 1 to B do 

9: for k in 1 to B do 

10: compute 
∗
T 
(n ) = 

ˆ H 1 
∗
T (i ) − ˆ H 2 

∗
T (k ) 

11: end for 

12: end for 

13: compute ˆ 
∗
T 
(•) = 

1 
B 2 

∑ B 2 

i =1 
ˆ 
∗

T 
(n )

14: sort δ∗(n ) = 
∗
T 
(n ) − ˆ 
∗

T 
(•) in increasing order 

15: set confidence level 1 − α

16: compute δ∗
α
2

← 

{ 

δ∗
α
2

/ #

(
δ∗<δ α

2

)
B ≤ α

2

} 

{i. e. if B = 10 0 0 and α = 0 . 1 choose the 50 th element on the sorted δ∗ } 

17: compute 

δ∗
(1 − α

2
)
← 

{ 

δ∗
(1 − α

2 
)

/ #

(
δ∗<δ

(1 − α
2

)

)
B ≤ 1 − α

2

} 

{i. e. if B = 10 0 0 and α = 0 . 1 choose the 950 th element on the sorted δ∗ } 

18: The lower bound of the confidence interval is 
ˆ 
T + δ∗

α
2

19: The upper bound of the confidence interval is 
ˆ 
T + δ∗

(1 − α
2 

) 

20: If 0 does not belong to the interval 

Then H 1 � = H 2 with α level of signification. 
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