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ABSTRACT
A strategy is presented to estimate the state of a nonlinear autonomous switched system, with no knowl-
edge of the switching signal, except its dwell time. To do so, algorithms to estimate the switching times and
the current mode of the system are developed. The estimation of the switching times is based on approxi-
mating the second ( generalised) derivative of the output of the system via a convolution of this signal with
a suitable function and on detecting the corresponding spikes. To estimate themodes, a scheme based on
the use of a bank of observers (one for each mode) and of a bank of subsystems (for each step of the esti-
mation process a suitable subset of the subsystems of the switched system) is developed. The algorithms
run regardless of the state observer model, as long as its output error norm decays exponentially with a
controlled decay rate.
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1. Introduction

A hybrid dynamical system consists of a family of continuous
time systems (generally described by differential equations or
differential inclusions) that switch among them according to a
discrete rule, often modelled by a discrete event system. This
class of systems is ubiquitous since it models the continuous and
discrete interactions that appear in complex systems.

A switched system is a hybrid system whose switchings are
performed by a switching signal and not by a discrete event sys-
tem. Hence, a switched system is a finite numbers continuous-
time dynamical subsystem and a switching rule (usually time-
or state-dependent), called a switching signal, that determines
the switching between the subsystems. In recent years, there
has been an increasing interest in the control problems posed
by switched systems due to their significance (see Decarlo
et al., 2000; Liberzon, 2003; Liberzon & Morse, 1999; Lin
& Antsaklis, 2009; Shorten et al., 2007 and references therein).

The state estimation problem has been investigated by
researchers for many decades. For switched systems, this prob-
lem presents an interesting challenge, given the interaction
between the discrete and the continuous dynamics present in
this type of systems. The problem of designing observers for
switched systems is acknowledged as an important topic of
research (see Alesandri &Coletta, 2001; Petterson, 2006, among
others). In this respect, the most demanding problem is that of
simultaneously estimating the switching times, the continuous
state and which subsystem (mode) governs the evolution of the
continuous state. In the case in which the switching signal is
only time dependent, it was shown that the observability of the
state and that of the switching signal are independent properties
(Gomez-Gutierrez et al., 2012) and hence suitable strategies of
estimation must be developed for each of them.
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For switched linear systems, i.e. those switched systems
whose subsystems are linear, different strategies were devel-
oped to estimate the switching times (Laboudi et al., 2019;
Tian et al., 2009), the mode (Lee et al., 2013), the continu-
ous state (Alesandri & Coletta, 2001; Petterson, 2006; Tanwani
et al., 2013; Xie & Wang, 2004) and both the mode and the
continuous state (Rios et al., 2012; Vidal et al., 2003).

In the case of nonlinear switched systems, strategies based on
sliding modes were used in, among others, Karami et al. (2019)
to estimate the switching times, and in Davila et al. (2012)
to estimate the continuous states and the mode. Designs
based on Lyapunov techniques were presented in Ngoc Dinh
and Defoort (2019) to estimate the continuous state and in
Barhoumi et al. (2012) to estimate the mode (the continuous
state was estimated in this case via high gain observers).

The aim of this paper is to develop an observation strategy
for nonlinear switched systems in order to estimate the switch-
ing times, the modes and the continuous states of the system
from the measurement of its output. It is only assumed that the
switching signal is time dependent and that it has a well-defined
dwell-time.

The technique to estimate the switching times is developed
first for the case of a single input system. Themethod is based on
approximating the second ( generalised) derivative of the out-
put of the system via a convolution of this signal with a suitable
function and on detecting the corresponding spikes. To do so, a
switching detectability condition, which only takes into account
the first derivative of the output, is imposed. This technique is a
posteriori generalised to the multiple output case.

In order to estimate the modes, a scheme based on the use
of a bank of observers (one for each mode) and of a bank of
subsystems (for each step of the estimation process a suitable
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subset of the subsystems of the switched system) is developed.
The only requirement imposed on the observers is that the norm
of the output error must decay exponentially, with a controlled
decay rate. In this paper, we do not present a new model of
the observer for each of the subsystems, but assume that it is
already designed. In thisway, since the focus is put on estimating
the switching times and the current mode, great flexibility is
obtained by selecting the model of the state observers among
those available in the literature that match the aforementioned
requirement.

This paper unfolds as follows. Section 2 introduces some
notation, definitions and assumptions that are used through-
out the work and states the problem. In Section 3, a method
for detecting the switching times is proposed, first for the case
of a single output and afterwords for the multiple outputs case.
The estimator of the mode and that of the continuous state are
presented in Section 4. In Section 5, a numerical example is
added in order to illustrate the effectiveness of the proposed
scheme. The high gain observer model used for each subsystem
in the example was presented in Gauthier et al. (1992). Finally,
in Section 6, the conclusions are presented.

2. Basic definitions and problem statement

In this work, we consider a nonlinear switched system{
ẋ = fσ(t)(x(t)),
y = h(x(t)), (1)

where x ∈ U ⊂ R
n is the continuous state vector, with U an

open set. σ : R≥0 → Q, with Q = {1, . . . ,N} the index set, is
the switching signal, a piecewise constant and continuous from
the right function. fq : U → R

n, q ∈ Q, and h : U → R
p are

sufficiently smooth vector fields and output map, respectively.
A (forward) solution of (1) corresponding to a switching sig-

nal σ is a locally absolutely continuous function x : [t0, tf ) →
R
n, with 0 ≤ t0 < tf , such that ẋ(t) = fσ(t)(x(t)) for almost all

t ∈ [t0, tf ).

Remark 2.1: In the sequel, we will assume that the state of
system (1) evolves in a compact set, and hence tf = +∞.

The following notation will be used in the paper:

• Given a vector field η and a real-value function ω, both suf-
ficiently smooth, Lkηω, k ∈ N0 is the Lie derivative of ω of
order k with respect to η.

• Let η as above and μ = (μ1, . . . ,μp) a smooth map. Then
we denote Lkημ = (Lkημ1, . . . , Lkημp).

• φq(t, t0, x0) : is the solution of (1) defined for almost all t ≥ t0
such that σ(τ) = q for t0 ≤ τ ≤ t, and that φq(t0, t0, x0) =
x0.

• Y(t, t0, x0, q) = h(φq(t, t0, x0)).
• For any x ∈ R

s, we denote with ‖x‖ its Euclidean norm, and
for any A ∈ R

r×s, ‖A‖ its associated norm.
• With ∂A we denote the boundary of set A.
• Given A ∈ R

r×s, we denote by λ(A) and λ(A) the minimum
and maximum singular values of A, respectively. Note that
‖A‖ = λ(A).

• Let a function f : R → R and n ∈ N. With D(n)f we denote
its nth generalised derivative.

• Given n a non-negative integer, δ(n)(t) denotes the nth (gen-
eralised) derivative of the Dirac delta function δ(t).

Assumption 2.1: The switching signal σ(t) satisfies tj+1 − tj ≥
τD (dwell time), with τD > 0 for all j, where tj are the switching
times. With this assumption, we avoid Zeno dynamics.

In the following, it will be assumed that τD is large enough to
determine the current mode of the system and to obtain a good
estimation of the states.

The next notion refers to the property of the output of a sys-
tem that enables to determine whichmode is active at each time
instant.

Definition 2.2: • Two modes q, q
 ∈ Q, q 	= q
 of system (1)
are indistinguishable by the output, if there exist initial states
x0, x′

0 ∈ U such that Y(τ , t0, x0, q) = Y(τ , t0, x′
0, q


), ∀t0 ≤
τ < t, ∀t < t0 + τD.

• System (1) is jointly observable if there do not exist pairs of
modes indistinguishable by the output.

We note that if system (1) fails to be jointly observable, a time
interval might exist in which the current mode of the system
could not be determined from the knowledge of its output.

Assumption 2.3: System (1) is jointly observable.

The next assumption, that is formulated inmany papers con-
cerning high gain observers (see, for instance, Ciccarella et al.,
1993; Gauthier et al., 1992), will be instrumental in the sequel.

Assumption 2.4: The state of the system takes values in a com-
pact convex set X ⊂ U .

The problem we address in this paper may be stated as
follows.

Given the measurements of the output y(t) = h(x(t)) of
system (1):

• determine the switching times and the activemode at each time
instant;

• estimate the state x(t) of the system.

3. Switching detection

A switching time ts is a time instant at which system (1) changes
from a mode, say, q to another q
. Due to the smoothness of the
output function h, this change is not reflected in the output y(t)
but in its first derivative, since

y′(t−s ) = Lfqh(x(ts)), y′(t+s ) = Lfq
h(x(ts)).

This fact makes the detection of the switching time ts difficult.
In this work, the changes in the dynamics of (1) correspond-

ing to the switching times are detected from the analysis of the
second-order derivative of y(t). This analysis is performed by
means of the convolution in amoving time interval (slidingwin-
dow) of y(t)with suitable functions. Similar ideas are presented



in Laboudi et al. (2019), Mboup (2007) and Fliess and Sira-
Ramírez (2003) for switched linear systems. In these works, the
linearity of the systems is instrumental.

3.1 Switching detection for a single output system

The switching detection strategy (estimator) for single output
systems (1), i.e. when h : X → R, is presented first, for the sake
of clarity. The extension to multiple output systems, when h :
X → R

p, is shown in Section 3.3.
The only condition already imposed on the system, i.e. the

joint observability, is rather general. In order to detect the occur-
rence of a switching, the following additional hypothesis about
the behaviour of the output derivative is introduced.

Assumption 3.1 (Switching detectability): There exists μ > 0
such that for any pair q, q
 ∈ Q with q 	= q


|Lfqh(x) − Lfq
h(x)| � μ ∀x ∈ X . (2)

Remark 3.1: Assumption 3.1 is rather strong and could be
weakened by involving derivatives of y(t) of higher order as, by
example, replacing (2) with

|Lkfqh(x) − Lkfq
h(x)|
� μ for each x ∈ X , with k = k(x) ∈ {2, . . . ,N − 1}.

Nevertheless, such weakening implies a considerable increase
in the computational burden. So, from now on, we will suppose
that Assumption 3.1 holds.

If (2) holds, then it is possible to detect a change of the mode
of the system based on the first derivative of the output sig-
nal y(t). In fact, (2) implies that at each switching time say, ts,
y′(t) has a jump discontinuity with oscillation |y′(t+s ) − y′(t−s )|
whose lower bound is μ. As a consequence, if (a) y′(t) can be
properly estimated and (b) jumps of y′(t) greater or equal in
absolute value to μ can be detected, then switching times can
also be detected.

Remark 3.2: It is known that to synthesise and implement a dif-
ferentiator to compute the derivative of a signal is not a trivial
task. When the frequency spectrum characteristics of the sig-
nal to be processed are known, it is possible to build a system
that approximates the transfer function of an ideal differentia-
tor in the frequency range of the signal (Kumar & Roy, 1988; Pei
& Shyu, 1988). In this case, low pass filters are used to reduce
the effects of the noise present in the output.

The range of application of these methods is limited to a
reduced number of output signals, and in addition, the inter-
nal dynamics of the system that approximates the differentiator
imposes delays that degrade the estimate of ts.

Differentiators based on sliding modes (Levant, 1998)
increase the operating range and robustness against noise, but
at the expense of allowing discontinuous actions and requiring
more complex computational efforts to obtain good results in
signal processing.

On the other hand, the numerical detection of the jump
based on the first derivative of y(t) is performed by compar-
ing two values (y′(t+s ) and y′(t−s )), that in principle might be

of several orders of magnitude greater than μ. In this case, the
detection of ts is a priori difficult.

Due to these facts, in this paper, we resort to the approxi-
mation of (generalised) derivatives of the second order of y(t),
with the aim to detect a spike at the switching time ts, which is
an easier task.

3.1.1 Generalised functions
Next, some results about generalised functions necessary for the
development of the switching detection strategy are presented.
For details, see, for example, Halperin and Schwartz (1952),
Gel’fand and Shilov (1964) and Zemanian (2011).

Lemma 3.2: Let f (t) a continuous function whose first derivative
f ′(t) is smooth, except at t = ts where it has a jump discontinuity.
Then the generalised derivative of second order of f (t) is given by

D(2)f (t) = F′′(t) + [f ′(t+s ) − f ′(t−s )]δ(t − ts), (3)

where

F′′(t) =
{

f ′′(t) if t 	= ts
0 if t = ts

and δ(t) is the Dirac delta function.

Lemma3.3: Let f (t), as in Lemma 3.2 and ta < tb such that ts 	=
ta and ts 	= tb. Let also I = [ta, tb] and w(t) = χI(t)f (t). Then
the generalised derivative of second order of w(t) is given by

D(2)w(t) = χI(t)D(2)f (t) +
1∑

k=0

f (k)(ta)δ(1−k)(t − ta)

− f (k)(tb)δ(1−k)(t − tb), (4)

where χI is the characteristic function of I, i.e.

χI(t) =
{

1 if t ∈ I,
0 if t 	∈ I.

Lemma 3.4: Let {δm,m ∈ N} be a sequence of smooth functions
such that limm→∞ δm = δ in the generalised sense, and let w be
a piecewise continuous function of compact support. Then the jth
generalised derivative of w(t) verifies

D(j)w(t) = lim
m→∞

∫ ∞

−∞
δ
(j)
m (t − s)w(s) ds. (5)

3.1.2 Switching detection strategy
Following Laboudi et al. (2019), we compute D(2)y(t) by imple-
menting a mobile window scheme, so that y(t) is processed in
time sections.

For a given time ti and a fixed time interval τ (mobile
timewindowwidth) let ti+1 = ti + τ , Ii = [ti, ti+1] and yτi(t) =
χIi(t)y(t). In this case, according to (4),

D(2)yτi(t) = χIi(t)D
(2)y(t) +

1∑
k=0

y(k)(ti)δ(1−k)(t − ti)

− y(k)(ti+1)δ
(1−k)(t − ti+1).



Suppose first that in Ii no switching occurs. Then

D(2)yτi(t) = χIi(t)y
′′(t) +

1∑
k=0

y(k)(ti)δ(1−k)(t − ti)

− y(k)(ti+1)δ
(1−k)(t − ti+1),

since in this case D(2)y(t) = y′′(t).
Suppose now that a switching occurs at ts ∈ (ti, ti+1). It

follows that

D(2)yτi(t) = χIi(t)Y
′′(t) + [y′(t+s ) − y′(t−s )]δ(t − ts)

+
1∑

k=0

y(k)(ti)δ(1−k)(t − ti)

− y(k)(ti+1)δ
(1−k)(t − ti+1), (6)

where, as above,

Y ′′(t) =
{

y′′(t) if t 	= ts,
0 if t = ts.

From (6) we establish a criterion to estimate the switching
time ts, which is based on searching for the term [y′(t+s ) −
y′(t−s )]δ(t − ts) in successive time windows. If that term is not
detected in, say, (ti, ti+1), the search continues in the next time
window, which starts at time ti+1, and so on.

3.2 Implementation

It must be pointed out that to obtain D(2)yτi(t) and to detect
the switching times by means of (6), imply to construct a dif-
ferentiator to compute the second derivative of a signal, and the
difficulties mentioned in Remark 3.2 increase.

Hence, we present next a method based on Lemma 3.4 to
approximate the values of D(2)yτi(t) ∀t ∈ Ii.

Consider the sequence of functions {δm(t),m ∈ N} given by

δm(t) = m√
2π

e−
(mt)2
2 . (7)

It follows that limm→∞ δm = δ in the generalised sense
(Gel’fand&Shilov, 1964;Halperin&Schwartz, 1952; Zemanian,
2011).

Let for eachm ∈ N

wm(t) =
∫ ∞

−∞
yτi(ζ )δ′′

m(t − ζ ) dζ (8)

=
∫ ti+1

ti
y(ζ )

(
m5

√
2π

)
e−

m(t−ζ )2
2

(
(t − ζ )2 − 1

m2

)
dζ .

(9)

Since yτi ∗ δ′′
m(t) = D(2)yτi ∗ δm(t) holds (see Zemanian, 2011

for details), it follows from Lemma 3.4 that limm→∞ wm(t) =
D(2)yτi(t).

On the other hand, by (6)

wm(t) = D(2)yτi ∗ δm(t)

= [χIi(t)Y
′′] ∗ δm(t) + [y′(t+s ) − y′(t−s )]δm(t − ts)

Figure 1. Switching detection scheme.

+
1∑

k=0

y(k)(ti)δ(1−k)
m (t − ti)

− y(k)(ti+1)δ
(1−k)
m (t − ti+1). (10)

Since δm is aGaussian function of zeromean and variance 1
m , for

any t0 ∈ R 99.7 per cent of the useful information of δm(t − t0)
is concentrated in |t − t0| ≤ 3

m .
Let n ∈ N and Ii = [ti + n

m , ti+1 − n
m ] with n ≥ 6. Then

from (10) and for all t ∈ Ii andm large enough, we have

wm(t) ∼= Y ′′ ∗ δm(t) + [y′(t+s ) − y′
s(t

−)]δm(t − ts)
∼= Y ′′(t) + [y′(t+s ) − y′(t−s )]δm(t − ts), (11)

since for those values ofm, Y ′′ ∗ δm(t) ∼= Y ′′ ∗ δ(t) = Y ′′(t).
From (11) we can establish a numerical criterion to detect a

switching in a time window as follows.
Since h and fq, q ∈ Q are smooth and X is a compact set,

there existsM> 0 such that |Y ′′(t)| < M for all t. As max δm =
m√
2π

, if

M <
μm

2
√
2π

, (12)

then |wm(ts)| >
μm

2
√
2π

. Fixedm that satisfies inequality (12) con-
sider the open set Is = {t ∈ Ii suchthat |wm(t)| >

μm
2
√
2π

} (see
Figure 1). Then, the following switching detection condition
(estimation of ts) is established:

t̂s = min{t ∈ ∂Is}. (13)

Remark 3.3: If ts ∈ [ti, ti + n
m ) or ts ∈ (ti+1 − n

m , ti+1], t̂s
would not be computed.

In order to deal with this fact, a second switching detector
is simultaneously used. This detector is similar to the first one,
except that the intervals that define the moving windows are of



the form I
i = [t
i + n
m , t



i+1 − n

m ], with t
i = ti+ti+1
2 and t∗i+1 =

t
i + τ .

Remark 3.4: mmust be selected as large as possible in order to
fulfil the following requirements:

(1) δm approximates δ close enough so that Y ′′ ∗ δm(t) ∼=
Y ′′(t),

(2) (12) holds,
(3) t
i + n

m < ti+1 − n
m and ti+1 + n

m < t
i+1 − n
m , and hence

m > 4n
τ
.

In principle, there is no theoretical restriction to the upper
values thatm and n can attain, but since the spectral bandwidth
of δm is of the order of m2, the greater is m the greater is the
disruptive effect of the noise in the detection of the switching.

On the other hand, and from the point of view of numeri-
cal implementation, as m increases the computational cost also
increases.

Remark 3.5: As for the selection of τ , in principle, it must hold
that τ � τD so as to detect just one switching at a time. Nev-
ertheless, the switching can happen at any time of Ii and hence
the condition (13) cannot be applied until (9) is evaluated for all
t ∈ Ii. This fact leads to a delay between the occurrence of the
switching and its detection.

In consequence, τ must be selected small enough as to make
this delay small, but no so small as to increase too much the
computational burden.

3.3 Switching detection formultiple output systems

In the previous section, a scheme to detect a switching in
a single output system was presented. In this section, we
extend the strategy to multiple output systems (y = h(x) =
(h1(x), . . . , hp(x)) ∈ R

p). To do so, we introduce the following
hypothesis.

Assumption 3.5 (Switching detectability for multiple out-
put systems): There exists a family of compact sets {Xk, k =
1, . . . , p} such thatX = ∪p

k=1Xk and for each k a numberμk > 0
such that for any pair q, q
 ∈ Q with q 	= q


|Lfqhk(x) − Lfq
hk(x)| � μk ∀x ∈ Xk (14)

for k = 1, . . . , p.

Remark 3.6: This assumption is the extension of Assumption
3.1 tomultiple output systems. Since the compact setsXk are not
necessarily disjoint, this assumption assures that at least one of
the p outputs yk(t) verifies switching detectability condition (13)
at any ts.

The switching detection for multiple output systems is per-
formed as follows: p switching detectors as above are set, one
for each of the p outputs of the system. These detectors have the
same values of τ and the same intervals Ii, but their respective
valuesmk differ, since they are computed according to (12) and
the criteria established in Remark 3.4.

Suppose that a switching occurs at time ts ∈ Ii and that l ≤ p
of the detectors give each an estimate t̂kjs according to (13), i.e.

t̂kjs = min{t ∈ ∂Ikjs },

where

Ikjs =
{
t ∈ Ii such that |wkj

mkj
(t)| >

μkjmkj

2
√
2π

}

and

wkj
mkj

(t) =
∫ ti+1

ti
ykj(ζ )

(
m5

kj√
2π

)
e−

mkj (t−ζ )2

2

×
(

(t − ζ )2 − 1
m2

kj

)
dζ .

The estimate of the switching time ts is obtained as

t̂s = min{t̂kjs : 1 ≤ j ≤ l}. (15)

4. State andmode estimation

The strategy for estimating states and modes of system (1)
consists of the following steps:

(a) design an observer for each mode fq and run all of them
simultaneously (bank of observers);

(b) let a subset of subsystems (h, fq) run at some specific times
(bank of subsystems);

(c) estimate the current mode of the system;
(d) assign the state estimate given by the observer correspond-

ing to the mode obtained in (c) as the estimate of the state
of the system.

Similar strategies but using only a bank of observes were pre-
sented in Davila et al. (2012) and Barhoumi et al. (2012). In
these works, the estimation of the mode depends on the type
of observer implemented and of its dynamics.

4.1 Bank of observers

Several observers, based on different techniques, solve the prob-
lem of state estimation of nonlinear systems (Barbot et al.,
2007; Bornard et al., 1995; Davila et al., 2009; Nicosia et al.,
1994). Unlike the case of linear systems, the local observability
condition (see, for instance, Hermann & Krener, 1977 for more
details and precise definitions) does not guarantee the existence
of an observer for a given nonlinear system. According to the
technique selected for the design of the observer, the nonlinear
systemmust verify additional conditions (see, e.g. Bornard et al.,
1995; Gauthier et al., 1992).

In order to achieve some generalisation and based on the
existing literature about observers’ design for nonlinear systems,
we consider a general structure for the observers of the bank,
assuming that the requirements that this structure imposes on
system (1) hold.



Assumption 4.1: Given system (1), it is possible to design for
each subsystem (h, fq), q ∈ Q an observer whose dynamics is
given by{ ˙̂xq = fq(x̂q) − Gq(x̂q)K(θ)[h(x̂q) − Y(t, t0, x0, q)]

ŷq = h(x̂q)
(16)

that verifies for all θ > 0

‖x̂q(t) − φq(t, t0, x0)‖
≤ G̃qk(θ) e−θ(t−t0)‖x̂q(t0) − x0‖ ∀t ≥ t0, (17)

where

• Gq : X → R
n×n is smooth and non-singular,

• K : R>0 → R
n×p,

• k(θ) e−θ t > 0 does not depend on q and for each t is strictly
decreasing w.r.t. θ ,

• G̃q is a bound related to Gq(x̂q).

Remark 4.1: In many of the observers found in the literature,
Gq is related to the observability matrix dOq. As the terms of
dOq involve Lie derivatives of h with respect to fq and since X
is a compact set, it is possible to obtain G̃q as follows:

λq = max
x̂q∈X

λ(Gq(x̂q)), λq = min
x̂q∈X

λ(Gq(x̂q)), G̃q = λq

λq
.

(18)
We assume that (18) holds for the observer of Assumption 4.1.

Lemma 4.2: Let for each q ∈ Q an observer whose dynamics is
given by (16). Let also M> 0 and te > 0. Then there exists θ =
θ
 (the same for all the observers) so that, for every q ∈ Q, the
following holds:

‖h(x̂q(t)) − h(φq(t, x0))‖ ≤ M ∀t ≥ te. (19)

Proof: Consider, with no loss of generality, t0 = 0 and denote
for each q ∈ Q, φq(t, 0, ·) = φq(t, ·).

Let for each q ∈ Q, x̂q(0) ∈ X be the initial condition of the
observer of mode q. Then, according to (17),

‖x̂q(t) − φq(t, x0)‖ ≤ G̃qk(θ) e−θ t‖x̂q(0) − x0‖; ∀t ≥ 0.
(20)

Consider the upper bound of the initial state error of the
observer

γq = max
x̄∈∂X

{‖x̂q(0) − x̄‖}. (21)

Also let

G̃ = max
q∈Q

G̃q, α = max
ξ∈X

∥∥∥∥∂h
∂x

(ξ)

∥∥∥∥ and γ = max
q∈Q

{γq}.
(22)

Then for all t ≥ 0 and from (20), we have

‖h(x̂q(t)) − h(φq(t, x0))‖
≤ α‖x̂q(t) − φq(t, x0)‖ ≤ αG̃qk(θ) e−θ t‖x̂q(0) − x0‖
≤ αG̃qγqk(θ) e−θ t ≤ αG̃γ k(θ) e−θ t . (23)

Since k(θ) e−θ te is strictly decreasing with θ , there exists θ
 such
that

k(θ
) e−θ
te ≤ M
αG̃γ

.

Let θ = θ
. From (23), we have for all t ≥ te

‖h(x̂q(t)) − h(φq(t, x0))‖ ≤ αG̃γ k(θ
) e−θ
t

= αG̃γ k(θ
) e−θ
te e−θ
(t−te)

≤ αG̃γ k(θ
) e−θ
te ≤ M

and the lemma holds. �

Remark 4.2: Lemma 4.2 leads to a design condition that
takes into account the hybrid characteristic of the system: it is
imposed that te � τD/2.

This requirement can be more or less conservative depend-
ing on the performance objectives that are required, but ensures
that before a new switching occurs the observation error lies
within a prescribed band. This fact is essential for the criterion
developed for the mode selection.

4.2 Bank of subsystem andmode and state estimation

The bank of subsystems is formed by the models of (some of)
the subsystems of (1), whose dynamics are given by{

ẋq = fq(xq)
yq = h(xq)

∀q ∈ Q. (24)

The algorithm implemented to estimate the system mode, q̂,
consists of the following steps:

(a) the comparison of the output errors between the output of
each observer of the bank and the output of the system:
eyq(t) = ŷq(t) − y(t), and

(b) the comparison of the state errors between the state of each
subsystem of the bank of subsystems and the state of the
corresponding observer: exq(t) = x̂q(t) − xq(t).

We denote with tk, k ∈ N the time instants at which the
observation strategy is implemented. The estimation of mode
and states is obtained under two different circumstances: (a)
in the initial interval with t1 = 0 and (b) when tk = ti+1 for
t̂s ∈ Ii with k > 1, where t̂s is the time instant when a switching
is detected by either (13) or (15).

The algorithm formode and state estimation proceeds as fol-
lows: let in each step k ∈ N of the algorithm �k ⊂ Q,Mk and tk
as defined below.

(I) At time tk the bank of observers starts with the same ini-
tial condition x̂q(tk) = x
 for all q ∈ �k and, according to (16),
provides from each observer a state estimate x̂q(t) and an output
estimate ŷq(t).

In the interval [tk, tk + te], each mode generates a differ-
ent output trajectory. At least one of the norms of the output
errors ‖eyq(tk + te)‖ of the bank of observers (the one that cor-
responds to the active mode) will be under the upper boundMk
established in Lemma 4.2.



As te � τD, in the interval [tk, tk + te] the system evolves
in the (unknown) mode σ(tk) = qk, so that the eyq are the
representatives of each subsystem.

The set �k ⊂ Q of the possible actives modes is redefined as

�k = {q ∈ �k such that ‖eŷq(tk + te)‖ < Mk} (25)

(Ia) The redefined set �k = {q∗}, then q̂k = q∗ and the esti-
mate states of (1) is set as x̂(t) = x̂q̂(t) for all t ∈ [tk + te, tk+1).

(Ib) The redefined set �k has more than one element. Then a
bank of subsystems as given by (24) with�k instead ofQ is set to
evolve in the time period [tk + te, tk + te + �t] (with �t given
by Lemma A.1 in the appendix), with initial condition xq(tk +
te) = x̂q(tk + te) for each subsystem q ∈ �k.

If the conditions of Lemma A.1 in the appendix are satisfied,
the mode estimation is carried out according to the rule

q̂k = argmin
q∈�k

‖exq(tk + te + �t)‖ (26)

and the estimate of the states of (1) is set as x̂(t) = x̂q̂(t) for all
t ∈ [tk + te + �t, tk+1).

(II) When a new switching time ts is detected by either (13)
or (15) with t̂s ∈ Ii, the algorithm proceeds as follows: (i) k
is increased to k+ 1, (ii) tk+1 is defined as tk+1 = ti+1, (iii)
the estimate of the states of (1) is set as x̂(t) = x̂(tk+1) for t ∈
[tk+1, tk+1 + te) and eventually for t ∈ [tk+1, tk+1 + te + �t)
and (iv) since at tk+1 an estimate of the mode q̂k already exists,
�k+1 is defined as �k+1 = Q\{q̂k}.

Finally, (v) the bank of observers is redefined according to the
new set �k+1, (vi) the initialising state is taken as x
 = x̂(tk+1)
and (vii) Mk+1 is determined from Lemma 4.2 with γ as given
by (21) – (22) with x
 instead of x̂q(0). Note that in this case
γq = γ for all q ∈ �k+1.

Remark 4.3: The first step of the algorithm proceeds as fol-
lows: let the system and the algorithm start at t = 0. Take
t1 = 0, �1 = Q, x
 ∈ X arbitrary and M1 as determined from
Lemma 4.2 where γ is given by (21) – (22) with x
 instead of
x̂q(0).

If themode commutes at ts and t̂s < te, or t̂s < te + �t in the
case I(b), take t1 = t̂s and x
 and �1 as above.

5. Example

In this section, we present an example in which the estimation
scheme described in the previous sections was implemented.

Table 1. System constants.

a1 = 0.2 b1 = 0.2 c1 = 5.7
a2 = 0.1 b2 = 0.1 c2 = 14
a3 = 0.15 b3 = 2 c3 = 4

Consider switched system (1) in R
3 with three modes Q =

{1, 2, 3} described by⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = −x2 − x3,
ẋ2 = x1 + ai x2,
ẋ3 = bi + x3(x1 − ci),
y = tanh(x2),

(27)

where ai, bi and ci are constant parameters which take the values
shown in Table 1.

The switching signal used in this example has a dwell-time
τD = 1 s and a length of 30 s. A detail of this signal is shown in
Table 2.

On the other hand, as the output mapping Oq(x) =
{Ljfqh(x), j = 0, . . . , 2 q = 1, . . . , 3, } is

Oq(x) =

⎡
⎢⎢⎣

tanh(x2)
0.1(x1 + aqx2) sech2(x2)

sech2(x2)(−0.1(x1 + x3) + 0.1(x1 + aqx2)
(0.1aq − 0.2(x1 + aqx2) tanh(x2)))

⎤
⎥⎥⎦ ,

dOq(x) has full rank if x2 	= 0, and hence each subsystem is
locally weakly observable. From the one-to-one relationship
between y and x2, it follows readily that the switched system is
generically jointly observable.

Given that the system verifies

|Lfih(x) − Lfjh(x)|
= 0.1(1 − tanh2(x2))|x2| |ai − aj| ∀i, j ∈ Q, (28)

and since 1 − tanh2(x2) 	= 0 ∀x2 ∈ R then, according to (2), it
is possible to detect a switching only when the state x2 	= 0. It
follows that (2) will only hold if the values of x are restricted to
a set such that |x2| ≥ μ
 for some μ
.

As this condition is not a priori feasible, in this example we
resorted to an alternative computation of μ in (2), based on the
one-to-one relationship between x2 and y. In fact, from (28) we
obtain

|Lfih(x) − Lfjh(x)|
= 0.1(1 − y2)|arctanh(y)| |ai − aj| ∀i, j ∈ Q.

From this condition, an adaptive bound is obtained as follows:
for each step i of the switching detection algorithm let

μi = 0.1|1 − y2| |arctanh( y )|μ
 with y = max
t∈Ii

{y(t)}, (29)

where μ
 is a design parameter. We note that the bounds μi
so obtained are associated with the window scheme of the
switching detection.

In simulations, this strategy improved, in terms of computa-
tional burden, the switching detection task. The value adopted
for μ
 was 0.05.

Table 2. Switching signal.

ts [seg] 0 2.1245 6.1024 11.7298 14.9385 17.6751 20.5002 24.8296 26.9388

σ(t) 2 3 1 2 3 1 3 2 3



Other parameters not related to the bank of observers
were chosen as τ = 1 × 10−2 s,m = 1 × 104 and n = 8. These
parameters fulfil some of the requirements of Remarks 3.4
and 3.5.

As for the bank of observers, a high gain observer presented
in Gauthier et al. (1992) was implemented for each subsystem.
This kind of observers verifies Assumption 4.1.

In the design of the observer θ = 10 was selected, with the
objective to fulfil the condition of Remark 4.2 for te = 0.1 s.

Remark 5.1: Prior to the implementation of the state estima-
tion scheme, the unknownparametersX and�twere estimated
by simulation.

(1) X was estimated as follows. It was assumed that all the
possible initial states of the system belong to a sphere X0
of radius 3 centred at x0 = (3.9, −3.2, 0.03) and initial
conditions {xj0, j = 1, . . . , 300} were chosen at random in
X0. Also switching signals {σi, i = 1, . . . , 50} with dwell
time τD = 1 s and length 30 s each were randomly gener-
ated. For each initial condition and each switching signal,
a trajectory x(t, σi, x

j
0) was generated and the value xji =

max0≤t≤30 ‖x(t, σi, xj0)‖ computed. Finally, from

x̄ = 1
15000

50∑
j=1

300∑
i=1

xji = 9.2518 and

σx =
√√√√ 1

15000

50∑
j=1

300∑
i=1

(xji − x̄)2 = 5.0981,

an estimate

X = {x ∈ R
3 : ‖x‖ ≤ x̄ + 3σx = 24.65} (30)

was obtained.
(2) The estimate of �t was obtained as follows; 2000 points

{xk0, k = 1, . . . , 2000} were selected at random in X , and
in a sphere of radius 0.01 centred in each xk0 three points
{xkj , j = 1, . . . , 3} were randomly selected. The points xk0
played the role of x0 in Figure A1, and the points xkj (where
the sub-index j refers to the jth mode of the system) the

role of xq

0
or xq0 . Once a mode q
 ∈ Q was selected, and

for each k, the trajectory of system (1) starting in this mode
at xk0 was generated. The trajectories of the subsystems and
of their corresponding observers in the banks, starting at
xkj , j = 1, . . . , 3, were also generated. The generation of the
trajectories continued until inequality (A2) was verified for
the first time, at δtq




k s. This process was repeated three
times, each one corresponding to a different selection of q
.
Finally, from

δ̄t = 1
6000

∑
q
∈Q

2000∑
k=1

δtq



k = 0.0382

and

σδt =

√√√√√ 1
6000

∑
q
∈Q

2000∑
k=1

(δtq



k − δ̄t)2 = 0.052,

we obtained the estimate

�t = δ̄t + 3σδt = 0.1912 s. (31)

The parameters for the simulation of the state estimation
scheme were taken as follows. Time of simulation: 30 s, ini-
tial state and initial estimated state: x0 = (3.9, −3.2, 0.03) and
x̂0 = (4.1, −3, 0.5), respectively.

• In simulations, it was found that the values ofMk computed
from (21) to (22) withX given by (30) are too conservative. It
was also found that the following scheme not only simplified
the task of evaluatingMk, but also improved the performance
of the algorithm.

Mk+1 was defined as follows: let t̃ be the time at which the
current mode of the system, q̂, is estimated. Then,
(1) if t̃ = tk + te, let Mk+1 = M̃ e−θ̃ (tk+1−tk), where M̃ =

minq∈�k−{q̂} ‖x̂q̂(t̃) − x̂q(t̃)‖,
(2) if t̃= tk + te + �t, letMk+1 = M̃ e−θ̃ (tk+1−tk−�t), where

M̃ = ‖exq̂(t̃)‖,
with θ̃ < θ , so that the dynamics of the variation of Mk be
slower than the dynamics of the estimation of the observers.

Figure 2. Detection of a switching for different values ofm. (a)m = 1 × 104, (b)m = 1 × 105.
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Figure 3. Reconstruction of the switching signal and detail at t = 0. (a) Switching signal reconstruction and (b) detail at t = 0.

Figure 4. Mode detection for different values of t̂s . (a) Only the bank of observers evolves. (b) Both the bank of observers and the bank of subsystems evolve.

Once tk+1 is determined by the algorithm, the value ofMk+1
is established.

The parameter θ̃ = 1 was taken and M1 = 1 was com-
puted as stated in Remark 4.3.

• Also in simulations, it was found that �t, as given by (31),
is too conservative, being the (finally adopted) value �t =
0.08 s a suitable one.

Remark 5.2: Although theoretically sound, criterion (13) is not
easy to apply, since the set Is is difficult to compute. So in the
simulations, the following switching detection condition was
used instead:

t̂s = min
{
t ∈ Ii : |wm(t)| ≥ μm

2
√
2π

}
. (32)

Table 3. Simulation results.

t̂s ti ti+1 = tk μi Mk M̃ t̃

2.1245 2.12 2.13 4.7506e−4 2.7324 4.3243e−4 2.31
6.1024 6.095 6.1050 7.2853e−4 8.7970e−6 0.0789 6.205
11.7298 11.725 11.735 3.1579e−4 2.8302e−4 0.0014 11.9150
14.9385 14.93 14.94 8.6780e−4 6.0285e−5 0.0022 15.12
17.6751 17.67 17.68 9.3783e−4 1.5483e−4 0.0015 17.86
20.5002 20.495 20.505 9.7347e−5 9.5257e−5 6.7435e−4 20.685
24.8296 24.825 24.835 5.1524e−4 9.6190e−6 0.1928 24.935
26.9388 26.93 26.94 4.9905e−4 0.0235 8.2714e−4 27.12

The results of the simulation of the state estimation scheme
are shown in the figures below.

Figure 2 presents the detection of the change from mode
q = 2 to mode q = 3, at ts = 2.1245 s (see Table 2). The crite-
rion of detection used was (32) for m = 104 and m = 105. We
note that asm increases, an improvement of the estimation t̂s of
ts is obtained.

Figure 3(a) shows σ(t) and its estimate σ̂ (t), and in Figure
3(b), a detail of their behaviour at t = 0 is presented. For t ∈

Figure 5. Time evolution of x1 and x̂1.
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Figure 6. Norm of the estimation error for the state x1. (a) Time evolution of |x̂1 − x1| and (b) detail.

[0 ; te + �t), σ̂ = 0 since no information of the switching sig-
nal was available. Note that, given the values ofM1 and θ̃ , once
time te has elapsed, �1 has more than one element. Hence the
bank of subsystems must evolve in order to estimate the current
mode. Also note the delay with which the algorithm estimates
the current mode.

Figure 7. Time evolution of x3 and x̂3.

This behaviour can also be seen in greater detail in Figure 4,
where the two possible cases of mode estimation are presented.
In Figure 4(a), the change of mode from q = 3 to mode q = 1
at ts = 6.1024 s and the estimation of the new mode are shown.
After Iτ where ts takes place and is detected, �3 has just one
element and the newmode is estimated at t3 + te. In Figure 4(b),
the change of mode from q = 1 to q = 2 at ts = 11.7298 s and
the estimation of q̂4 are exhibited. In this case,�4 has more than
one element and then the new mode is estimated at time t4 +
te + �t.

In Table 3, we present additional information that shows how
the algorithm of detection of the switching and the values of
some of the parameters evolve. We note that the switching time
estimations t̂s coincide up to the fourth decimal with the true
switching times ts as given by Table 2. This fact reflects the
effectiveness of the proposed scheme.

The complete estimation process can be seen in Figures 5–8.
In Figure 5, the evolution of x1(t) and x̂1(t) is presented, while
in Figure 6 the estimation error for this state is shown. In this
figure the degradation of the estimation error behaviour near
the switching times can be seen. This is due to the fact that the
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Figure 8. Norm of the estimation error for the state x3. (a) Time evolution |x̂3 − x3| and (b) detail.



estimation of the states remains fixed during the periods tk + te
and/or tk + te + �t. It can also be noted that once the current
mode of the system is determined, the exponential decay of the
estimation error allows achieving a good estimate of the state.

The estimation of state x3 is presented in Figures 7 and 8,
where a behaviour similar to that of the estimation of state x1
can be seen.

Referring to the state x2 no figure is shown, since x2 is in a
one-to-one relationship with the output.

6. Conclusion

In this work, an observation strategy for autonomous non-
linear switched systems was presented. The strategy is based
on the measurement of the output signal and assumes that
no information about the dynamics of the switching signal is
available.

To develop the strategy, (a) a moving time window scheme
was designed to detect the switching times via the convolution
of the output and suitable functions and (b) a criterion based
on the use of a bank of observers and a bank of subsystems
was established that enables the estimation of the current mode
of the switched system. The only condition that this criterion
imposes on the model of the state observer is that the output
error of the observer must obey a controlled exponential decay
law.

Finally, an example was presentedwhere the behaviour of the
strategy is shown. In this example, one of the state observers
already found in the literature and that meets the requirements
of the mode detector was used.
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Appendix. Lemma for state andmode estimation
Lemma A.1: Let system (1) in the mode q
 ∈ Q with the initial condition
x(t0) = x0. Let in addition exq (t) = x̂q(t) − xq(t) be the estimation error at
time t between each subsystem (16) and the corresponding observer (24) for
the same initial condition xq(t0) = x̂q(t0). If ∀q ∈ � − {q
}, it holds that

‖K(θ)[h(xq
 (t0)) − h(x0)]‖ <
λmin

λmax
‖K(θ)[h(xq(t0)) − h(x0)]‖ (A1)

with λmin = minq∈� λq, λmax = maxq∈� λq and λq, λq as in (18), then there
exists �t > 0 not depending on t0 such that ∀t ∈ (t0, t0 + �t]

‖exq
 (t)‖ < ‖exq (t)‖. (A2)

Proof: The dynamics of the error of each subsystem, eq, verifies

ėxq (t) = fq(x̂q(t)) − fq(xq(t)) − Gq(x̂q(t))K(θ)[h(x̂q(t)) − Y(t, t0, x0, q)]

= fq(x̂q(t)) − fq(xq(t)) − Gq(x̂q(t))K(θ)[h(x̂q(t))

− h(xq(t)) + h(xq(t)) − Y(t, t0, x0, q)]

= fq(x̂q(t)) − fq(xq(t)) − Gq(x̂q(t))K(θ)[h(x̂q(t)) − h(xq(t))]

− Gq(x̂q(t))K(θ)[h(xq(t)) − Y(t, t0, x0, q)]

= −Gq(x̂q(t))K(θ)[h(xq(t)) − Y(t, t0, x0, q)], (A3)

since xq the dynamics of the subsystem q and that of the corresponding
observer x̂q are the same as both of them evolve from the same initial
condition xq0 .

Consider the first-order approximation of exq (t) around t0

exq (t) = exq (t0) + ėxq (t0)(t − t0) + ϒ(t − t0)

= −Gq(x̂q(t0))K(θ)[h(xq(t0)) − h(x0)](t − t0) + ϒ(t − t0) (A4)

as exq (t0) = 0. Here ϒ(t − t0) are the terms of order higher than one.

Figure A1. Phase portrait of system (1), bank of observers (16) and bank of sub-
system (24).

Due to the smoothness of fq and h, and to the compactness ofX , ‖ϒ(t −
t0)/(t − t0)2‖ is uniformly bounded in closed intervals, say [t0, t
] (with
bound depending on t
). It follows that there exists �t > 0 such that for
any t1 ∈ (t0, t0 + �t]

exq (t1) ∼= −Gq(x̂q(t0))K(θ)[h(xq(t0)) − h(x0)](t1 − t0). (A5)

Hence

‖exq
 (t1)‖2 ∼= ‖Gq
 (x̂q
 (t0))K(θ)[h(xq
 (t0)) − h(x0)]‖2�t21

≤ λ2max‖K(θ)[h(xq
 (t0)) − h(x0)]‖2�t21

< λ2min‖K(θ)[h(xq(t0)) − h(x0)]‖2�t21

≤ ‖Gq(x̂q(t0))K(θ)[h(xq(t0)) − h(x0)]‖2�t21
∼= ‖exq (t1)‖2. (A6)

In Figure A1, a diagram of the relative positions of the trajectories involved
is shown.
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