
Schema Evolution in Multiversion
Data Warehouses

Waqas Ahmed, CODE WIT, Université libre de Bruxelles, Belgium

Esteban Zimányi, CODE WIT, Université libre de Bruxelles, Belgium

https://orcid.org/0000-0003-1843-5099

Alejandro A. Vaisman, Department of Information Engineering, Instituto Tecnológico de Buenos Aires, Argentina

https://orcid.org/0000-0002-3945-4187

Robert Wrembel, Poznan University of Technology, Poland

https://orcid.org/0000-0001-6037-5718

INTRODUCTION

A Data Warehouse (DW) integrates data coming from different sources (Vaisman & Zimányi,

2014) and supply it to various systems, including Business Intelligence (BI) applications. Data

warehouses change in their content and schema. Typically, content changes are due to routine

business operations or the correction of existing data. An example of a content change is a

modification in the price of a product.

In practice, changes to a DW schema result from (1) the evolution of external data sources, (2)

changes of the real-world represented by a DW, (3) new user requirements, and (4) the creation

of simulation environments to list the most common causes. An example of a schema change is a

change in the geographical hierarchy of a sales network. As reported in (Moon, Curino, Deutsch,

Hou, & Zaniolo, 2008; Qiu, Li, & Su, 2013; Sjøberg, 1993; Vassiliadis, Zarras, & Skoulis,

2017), the schemas of data sources change frequently. For example, the Wikipedia schema

changed on average every 9-10 days during the 4.5 years of its lifetime. As a result of the

changes in data sources, the content and schema of the related DWs must also change. Real-

world examples of scenarios leading to changes in DWs can be found in (Eder, Koncilia, &

Kogler, 2002; Rundensteiner, Koeller, & Zhang, 2000).

A DW should keep track of the evolution of its content and schema to reconstruct the state of the

world under consideration at any instant without losing data. A temporal data warehouse (TDW)

(Golfarelli & Rizzi, 2009) keeps track of the evolution of its contents whereas, a multiversion

data warehouse (MVDW), based on multischema data management principles (Roddick, 1995;

Herrmann, Voigt, Pedersen, & Lehner, 2018), handles content and schema changes by creating

multiple and persistent DW versions.

Even though version management in databases has been researched for over 30 years (in the

context of object databases, relational databases, data warehouses, XML databases), it is still an

active research field. This research is regaining its importance in the context of NoSQL storage

and data lakes. Support for version management was explicitly stated as a requirement for data

lakes management systems (Nargesian, Zhu, J. Miller, Pu, & Patricia C. , 2019).

https://orcid.org/0000-0003-1843-5099
https://orcid.org/0000-0002-3945-4187
https://orcid.org/0000-0001-6037-5718

The temporal DW-based approaches profit from the support of various temporal query languages

to analyze changing data and from the existence of multiple index structures. Such approaches

are suitable for representing historical data versions and not for representing and managing

schema changes. On the other hand, the MV approaches allow managing both data and schema

changes. However, the implementation of such approaches is more complicated. Moreover, they

possess the limited capabilities of querying DW versions.

Multidimensional Data Model

Usually, data in a DW is represented using the multidimensional model (MD), which stores data

as a collection of facts, measures, dimensions, levels, and hierarchies. These notions are

informally introduced next through a running example that represents sales in a fictitious

company. The initial DW version is depicted in Figure 1, using the MultiDim (Vaisman &

Zimányi, 2014) notation.

Figure 1 The initial DW version 𝑉1 to analyze the sales of a company.

In a MD model, data are perceived in an n-dimensional space. In this space, a fact is a subject of

interest. Each observation in a fact is called a fact member. Measures are numerical quantities

that quantify a fact. Dimensions provide context to facts. For example, sales events can be

perceived in a three-dimensional Sales fact, contextualized by dimensions Product,

SalesDate, Store, and quantified by measure Quantity.

Levels are described by attributes and provide dimension values. For example, level Product

provides all possible values for dimension Product. Instances of a level are called level

members. A DW may contain multiple levels, and multiple facts may share these levels. A level

is connected to a fact if it provides values for any dimension in it. Such a level determines that

dimension's granularity, which is the level of details at which measures are recorded. For

example, in the fact Sales in Figure 1, values for dimension SalesDate come from level

Month; therefore, the dimension's granularity is at the Month level. A level may provide values

for more than one dimension, and such dimensions are called role-playing dimensions.

The relationship between levels is called an aggregation relationship, which associates the

members of a parent level and a child level. The latter is the level defined at a finer granularity in

the relationship. Further, the cardinality of an aggregation relationship indicates how level

members relate to each other. Analogously, the cardinality of the relationship between a fact and

a level indicates how fact members are associated with level members.

Like conceptual modeling, cardinalities can be one-to-one (1-1), many-to-one (m-1), and many-

to-many (m-m). Furthermore, the cardinality can be optional (denoted 0) for any of the two

participating entities of a relationship, meaning that the participation of members of an entity is

not mandatory in the relationship. For example, the cardinality between level Product and fact

Sales is many-to-one, meaning that a sales transaction contains one product, and a product

member may appear in multiple sales transactions. A roll-up hierarchy is a collection of

logically related aggregation relationships that allows aggregating measure values to a coarser

level of detail from values at a finer level of detail.

Often, the MD data is analyzed using a sequence of the so-called OLAP operators. These

operators include roll-up, dice, project, rename, and drill-across. The roll-up operation

transforms data from a lower level of details to a higher level of detail, for example, aggregating

the daily sales to monthly sales. The dice operation filters out specific data from the DW; for

example, viewing the sales made in Belgium only. The project operation reduces the

dimensionality of a fact; for example, eliminating store dimension from fact Sales. The rename

operation renames a dimension in a fact; for example, changing dimension name SalesDate to

OrderDate. Finally, the drill-across operation correlates data from another fact; for example,

merging the fact Sales with SalesForecast to analyze the actual and forecast yearly sales

together.

Running Example

Consider the following changes applied to the initial version 𝑉1 from Figure 1, which was

created at the instant 𝑡0.

C1. Level Store is deleted from the DW; thus, dimension Store is removed from fact Sales.

C2. A new level SubCategory is added, and aggregation relationships between the new level

and Product and Category are defined.

C3. Level Day is added, and it is also linked to fact Sales. As a result, the granularity of

dimension SalesDate is changed from level Month to Day. Moreover, an aggregation

relationship Day_Month is created between levels Day and Month.

C4. A role-playing dimension ShipDate is added to the fact.

C5. In level Customer, attribute Name is renamed to CustomerName, and a new attribute

CustomerType is added.

C6. The cardinality of aggregation relationship Customer_City_Lives between levels

Customer and City is changed from m-1 to m-m.

C7. Finally, a new measure Freight is added to fact Sales.

Due to schema changes, the data corresponding to new schema elements becomes available, and

data corresponding to the existing elements becomes unavailable. For example, after the change

denoted C1, the information about stores where sales occur, is not available for the new fact

members. After C3, the information about daily sales becomes available. One way to handle

these changes is through the support of schema evolution, in which the existing data is

conformed and exported to the new schema. However, this may lead to the loss of some

information. For example, if dimension Store from fact Sales is deleted in the new schema,

then the store information of the existing fact members is lost. Furthermore, all existing

applications and reports must be adapted to consume data from the DW using the new schema.

An alternative approach to handle schema changes is using schema versioning, where changes

are handled by creating and maintaining DW versions. The above modifications at 𝑡4 in DW

version 𝑉1 result in creating another DW version 𝑉2 (shown in Figure 2).

Figure 2 DW version V2 after applying schema changes at 𝑡4.

Research Problem

Given that a DW is, by definition, historical and time-varying, a MVDW must (1) retain all the

data loaded into it throughout its lifespan; (2) allow accessing all the stored data using any

schema version; and (3) enable OLAP operations producing semantically correct results. The

first requirement is straightforward, implying that no data will ever be deleted from a DW.

However, the second and third requirements are not trivial and need the following

considerations.

First, data can be stored at various granularities using multiple schemas; hence, it must be

transformed to conform to the queried schema. For example, C3 resulted in the change of the

granularity of dimension SalesDate from Month to Day. Subsequently, from 𝑡4 onwards, all

fact members will be daily sales whereas, the fact members before 𝑡4 were the monthly sales. To

access all sales using schema version active at 𝑡1, the daily sales after 𝑡4 need to be converted

into monthly sales. Conversely, to access the sales using schema active after 𝑡4, the monthly

sales recorded before 𝑡4 must be disaggregated to daily sales.

Second, data of a schema element in the queried schema may not be present in at least one of the

DW schemas, leading to schema incompatibility and missing information. For instance, the store

information for the sales recorded after 𝑡4 could be unavailable; therefore, the breakdown of

sales amount per store could not add up to the total sales amount.

Contributions and Paper Organization

In our previous work (Ahmed, Zimányi, Vaisman, & Wrembel, 2020), we proposed a MD model

to manage the content changes. This paper extends the MD model with multiversion capability to

offer the advantages of both approaches. On the one hand, the temporal MD model provides an

easier-to-implement approach to manage content changes. On the other hand, handling content

changes in MVDWs is complicated; however, they can manage schema changes. Thus, the

temporal and MV MD models complement each other and can be used to manage content and

schema changes independently.

This paper proses a MVDW which has the following features.

• The MVDW stores only once all the members of all versions of a level and fact to avoid

data deduplication. These stored members are then shared among various level and fact

versions via data mappings. Opposite to various database version management

approaches, which require bidirectional mappings between consecutive schema versions,

only unidirectional mappings are needed. This approach makes version management and

querying a MVDW more efficient.

• Schema changes in MVDW can be carried out via schema modification operators

(SMOs). The semantics of the included SMOs are given for a MD model, which are

independent of the underlying implementation. For example, if a MVDW is implemented

on a relational database, these MD SMOs can be translated into relational SMOs (Curino,

Moon, Ham, & Zaniolo, 2009; Herrmann, Voigt, Pedersen, & Lehner, 2018). Defining

SMOs for the MD model makes the schema evolution concise and elegant. For instance,

in a relational DW, the deleteRelationship SMO is a concise representation of deleting a

foreign key constraint and a column from a table. Furthermore, a user can derive new

schema versions by operating over a more familiar model without interacting with the

underlying low-level structures.

• The MVDW can deal with content and schema changes separately. The DW versions are

created only upon schema changes, and the content changes can be managed using

temporal DWs. In this way, the user can take advantage of temporal DW features to store

and query time-evolving data and use MVDW to manage the schema changes.

• Each DW version behaves as a complete DW with all the data stored using all versions;

therefore, traditional OLAP operators can be used to query data from any DW version.

The rest of the paper is organized as follows. It begins with an intuitive explanation of the

proposed MVDW and the semantics of the included SMOs. Then, the constructs of a MVDW are

formalized, and OLAP operations on it are shown. After this, the paper shows how the formal

constructs of the MVDW, including the data consistency constraints, can be mapped into a

relational schema. Also, with the help of example queries, it is shown how the model's OLAP

operations can be implemented in the standard SQL. A study of the related work follows, and

finally, the conclusions and future research directions are given.

MULTIVERSION DATA WAREHOUSE

This section gives an intuitive explanation of the components of a MVDW. A MVDW consists

of DW versions. Each DW version comprises a schema version, which defines the structure of

data, and an instance version, which includes data that conform to a given schema version.

Linear of branched versioning model (Wrembel & Bebel, Metadata management in a

multiversion data warehouse, 2005) can be used to create DW versions. In the linear versioning

model, the DW versions are linearly ordered to the time they are created. Also, a DW version is

derived from the latest version only, which is also used to store the new data. Moreover, at a

given instant, the version that is used to store or access data is called the active version. In the

branched versioning model, more than one schema version can be derived from the latest

version. The linear versioning model is straightforward and captures real-world business

changes. The branched versioning model requires more maintenance but allows simulating

alternative business scenarios. This paper considers the linear versioning model; however, the

MVDW can be generalized to enable branched versioning. The history of multiple DW versions

is stored as a DW version derivation graph, and for the example MVDW, it is shown in and

create new versions of either DW or its elements. For instance, the schema changes in level

Customer create a new version of the level. The initial and new versions of the level are shown

in Figure 4 and Figure 5, respectively. Furthermore, the new DW version 𝑉2 includes

Customerv2. A functional description of the SMOs is given in When creating a new element

version, an SMO modifies the corresponding metaelement if needed, creates a new element

version and a mapping between it and the corresponding metaelement. For example,

addAttribute(Customerv1, CustomerType: String) add a new attribute customerType to the

metalevel Customermeta, and creates a new level version Customerv2, and created and mapping

between Customerv2 to Customermeta.

A fact version comprises dimensions and measures, each of which has a corresponding

dimension and measure in the metafact. A metafact is composed of the union of all dimensions

and measures created in all versions of a fact. The schema of a metalevel and metafact is append-

only; that is, because of schema changes, no element is deleted from it. In this way, all existing

data are preserved.

The additional elements of a MVDW are aggregation relationships and hierarchies, which are

composed of their versions. An aggregation relationship version associates members of two

levels. A hierarchy version is composed of logically ordered aggregation relationship versions.

Figure 7 schematically shows all components of a MVDW.. Multiple SMOs can be grouped in a

transaction to derive a new element version. All SMOs are information preserving; that is, no

information is lost by applying any SMO. All versions of an element form an element version

derivation graph independent of the DW version derivation graph and have the first element

versions at the root.

.

Figure 3 Version derivation graph of the DW versions given in Figures 1 and 2. Version 𝑉1 and 𝑉2 consist of schema versions

𝑆𝑉1and 𝑆𝑉2, and instance versions 𝐼𝑉1 and 𝐼𝑉2, respectively.

Schema changes in a DW version trigger the creation of new versions. These changes may affect

the overall schema, such as adding level SubCategory and deleting level Store from the initial

DW version 𝑉1, or may affect an element within a version, such as adding attribute

CustomerType to level Customer.

Schema modification operators (SMOs) are used to carry out such changes and create new

versions of either DW or its elements. For instance, the schema changes in level Customer

create a new version of the level. The initial and new versions of the level are shown in Figure 4

and Figure 5, respectively. Furthermore, the new DW version 𝑉2 includes Customerv2. A

functional description of the SMOs is given in When creating a new element version, an SMO

modifies the corresponding metaelement if needed, creates a new element version and a mapping

between it and the corresponding metaelement. For example, addAttribute(Customerv1,

CustomerType: String) add a new attribute customerType to the metalevel Customermeta, and

creates a new level version Customerv2, and created and mapping between Customerv2 to

Customermeta.

A fact version comprises dimensions and measures, each of which has a corresponding

dimension and measure in the metafact. A metafact is composed of the union of all dimensions

and measures created in all versions of a fact. The schema of a metalevel and metafact is append-

only; that is, because of schema changes, no element is deleted from it. In this way, all existing

data are preserved.

The additional elements of a MVDW are aggregation relationships and hierarchies, which are

composed of their versions. An aggregation relationship version associates members of two

levels. A hierarchy version is composed of logically ordered aggregation relationship versions.

Figure 7 schematically shows all components of a MVDW.. Multiple SMOs can be grouped in a

transaction to derive a new element version. All SMOs are information preserving; that is, no

information is lost by applying any SMO. All versions of an element form an element version

derivation graph independent of the DW version derivation graph and have the first element

versions at the root.

The elements of a DW version are level versions, fact versions, aggregation relationship

versions, and hierarchy versions. These elements behave like regular levels, facts, aggregation

relationships, and hierarchies, respectively. A DW version may have only one version of any

element. Also, the element versions that do not evolve between DW versions are shared among

them.

A level and a fact in the MVDW consist of its versions and a metalevel and a metafact,

respectively. The meta elements allow storing element members only once, which then can be

shared among multiple element versions. In this way, element versions serve as an interface to

access or store data into the corresponding metaelement.

A level version is composed of attributes, and each attribute has a corresponding attribute in the

metalevel. The metalevel Customermeta is shown in Figure 6, and it consists of all attributes in

both versions of the level.

Figure 4 Level version Customerv1 after 𝑡4.

Figure 5 Level version Customerv2 after 𝑡4.

Figure 6 Metalevel Customermeta after 𝑡4.

When creating a new element version, an SMO modifies the corresponding metaelement if

needed, creates a new element version and a mapping between it and the corresponding

metaelement. For example, addAttribute(Customerv1, CustomerType: String) add a new attribute

customerType to the metalevel Customermeta, and creates a new level version Customerv2,

and created and mapping between Customerv2 to Customermeta.

A fact version comprises dimensions and measures, each of which has a corresponding

dimension and measure in the metafact. A metafact is composed of the union of all dimensions

and measures created in all versions of a fact. The schema of a metalevel and metafact is append-

only; that is, because of schema changes, no element is deleted from it. In this way, all existing

data are preserved.

The additional elements of a MVDW are aggregation relationships and hierarchies, which are

composed of their versions. An aggregation relationship version associates members of two

levels. A hierarchy version is composed of logically ordered aggregation relationship versions.

Figure 7 schematically shows all components of a MVDW.

Figure 7 Schematic representation of a MVDW.

When accessing all MVDW data using a schema version, some data may not conform to the

active schema. A nonconformity arises when the data of an element in the active schema may be

unavailable or indirectly available in any of the other schema versions. For instance, if all

customers are accessed using Customerv2, then the value of CustomerType is unavailable for

members stored using Customerv1. However, the problem of nonconformity does not arise when

all customers are accessed using Customerv1.

Coercion functions (Merlo, Bertino, Ferrari, & Guerrini, 1999; Malinowski & Zimányi, 2008)

ensure the data conformance among schema versions. A coercion function gives the default

value of an attribute, dimension, or measure. It can also provide a default parent for a child

member in a child-parent relationship. For instance, the function defCustType can set the

CustomerType to a default value for members whose attribute value is unavailable. A brief

description of the nonconformity arising because of each schema change is also given in When

creating a new element version, an SMO modifies the corresponding metaelement if needed,

creates a new element version and a mapping between it and the corresponding metaelement. For

example, addAttribute(Customerv1, CustomerType: String) add a new attribute customerType

to the metalevel Customermeta, and creates a new level version Customerv2, and created and

mapping between Customerv2 to Customermeta.

A fact version comprises dimensions and measures, each of which has a corresponding

dimension and measure in the metafact. A metafact is composed of the union of all dimensions

and measures created in all versions of a fact. The schema of a metalevel and metafact is append-

only; that is, because of schema changes, no element is deleted from it. In this way, all existing

data are preserved.

The additional elements of a MVDW are aggregation relationships and hierarchies, which are

composed of their versions. An aggregation relationship version associates members of two

levels. A hierarchy version is composed of logically ordered aggregation relationship versions.

Figure 7 schematically shows all components of a MVDW..

The difference in the granularity of a dimension also introduces a nonconformity. For example,

after C3, version Salesv2 of fact Sales is created, which stores the daily sales. Since the initial

version Salesv1 was keeping monthly sales, the two versions' sales do not conform to each other.

Therefore, when accessing all sales using Salesv1, daily sales need to be converted to monthly

sales and vice versa. To handle C3, a new dimension SalesDate is added to the metafact shown

in Figure 8, and it records the day of sales. The coercion function dayMonth can obtain the

month each day belongs to using the aggregation relationship Day_Month as shown in Figure 9

for fact members added using Salesv2 (gray shaded).

Table 1 Functional description of the schema modification operations (SMOs).

Schema change Nonconformity Semantics of SMO

Add level/fact None - Only the queries written against

the new schema will mention new level/-

fact, thus there is no impact on the existing
queries.

Create a new MV level/fact.

Delete level/fact The deleted level/fact is still available in the

existing versions. However, the new data
will not be loaded for it.

Do nothing

Add attribute/ measure The existing level or fact members will not

have values for the added attribute/measure,

respectively.

Add a new attribute/measure to the

metalevel/metafact and create a new

level/fact version with the new attribute
included.

Delete attribute/ measure The new level or fact members will not have

values for the deleted attribute/measure,
respectively.

Create a new version of the level/fact with

the new attribute excluded.

Rename attribute/ measure None - However, an alias mapping is

required to map the renamed

attribute/measure to an attribute/measure in
the metalevel or metafact, respectively.

Create a new level/fact version with the

renamed attribute included and create a

a mapping between renamed
attribute/measure and an attribute/measure in

the metalevel/metafact.

Change attribute/ measure domain to
specific

It may not be possible to convert the existing
values to the new type, e.g., string to int.

Also, there may be a loss of information for

the existing measure values, e.g., converting
float to int.

Add a new attribute/measure with the
changed type in the meatalevel/metafact

and convert the values for the existing

members to the new type.

Change attribute/ measure domain to generic The attribute/measure values for the new

level/fact members may not be available in

the existing schema as they may not be
convertible to the previous specific type,

e.g., change from int to string.

Add a new attribute/measure with the

changed type in the meatalevel/metafact

and convert the values for the existing
members to the new type.

Add relationship The existing child members will
become orphans unless their parents are

explicitly specified.

Create a new relationship between parent
and child levels and link the orphan child

members to the default parent member.

Delete relationship The new child level members will become
orphan.

Do nothing

Change cardinality (m-m to 1-m) The child-parent relationship between

existing members may violate the cardinality

constraint in the new schema.

Create a new relationship version. Also,

use a function to convert m-m to 1-m for

the existing members. The new members
must adhere to the constraint by default.

Change cardinality (1-m to m-m) The child-parent relationship between the

new members may violate the constraint in
the previous schema.

Create a new relationship version. Also,

use a function to convert m-m to 1-m for
the new members.

Change cardinality (make optional) The new members may violate the constraint

in the previous schema.

Create a new relationship version and link

the orphan members to the default parent

member.

Change cardinality (make mandatory) The existing members may violate the

constraint in the new schema.

Link the orphan members to the default

parent member.

Add/delete level to/from hierarchy None Create a new hierarchy version with the

level added/deleted in it.

Add dimension to fact The existing fact members will not have a

dimension value for the newly added

dimension thus may not be available for
OLAP operations involving this recently

added dimension.

Create a new fact version with the new

dimension and obtain the dimension values

for the existing fact members as per the
coercion function.

Delete dimension from fact The new fact members will not have

dimension value for the existing dimension.
They thus may not be available for OLAP

operations involving the deleted dimension.

Create a new fact version with the deleted

dimension excluded and obtain the
dimension values for the new fact members

as per the coercion function.

Make granularity finer/coarse The semantics of the data may become

different in two versions, e.g., daily vs

monthly sales.

Treat as adding a new dimension to a fact.

Similarly, the function monthDay gives the value of SalesDate for fact members added using

Salesv1. The function can map each month to a default day, for example, the first day of the

month. The default day of each month is shown in blue in Figure 9. In Figure 8, the values

obtained from coercion functions are bounded by the blue boxes.

Figure 8 Fact Salesmeta where missing values are obtained from coercion functions.

Figure 9 Aggregation relationship Day_Month

The change of granularity from finer to coarser can also be handled in the same way as above.

As an example, if the granularity of SalesDate is changed from the Day to Month level, then

the new and existing fact members will not have values for SalesDate and SalesMonth,

respectively. However, as in the case of change of granularity from Month to Day level,

coercion functions monthDay and dayMonth can provide the values for SalesDate and

SalesMonth, respectively.

A FORMAL MULTIVERSION DATA WAREHOUSE MODEL

This section formalizes the MVDW given in the previous section and shows how OLAP

operations can be performed on it.

A Multidimensional Multiversion Data Warehouse

In what follows, 𝛽 = {𝐵𝑜𝑜𝑙𝑒𝑎𝑛, 𝐼𝑛𝑡𝑒𝑔𝑒𝑟, 𝑅𝑒𝑎𝑙, 𝑆𝑡𝑟𝑖𝑛𝑔} is a set of base types. Furthermore, the

domain of a base type 𝑏 ∈ 𝛽 is denoted 𝑑𝑜𝑚(𝑏), and it is extended with a special value ⊥. Also,

𝐶𝑎𝑟𝑑 = {01 − 01, 01 − 1, 1 − 01, 1 − 1, 0𝑚 − 01, 0𝑚 − 1, 𝑚 − 01, 𝑚 − 1, 0𝑚 − 0𝑚, 0𝑚 −

𝑚, 𝑚 − 0𝑚, 𝑚 − 𝑚} is a set of cardinality constraints whose elements follow the usual

semantics as in conceptual modelling.

Definition 1 (Coercion function). A coercion function 𝑓 is defined as 𝑓: 𝑑𝑜𝑚(𝑏1) × … ×
𝑑𝑜𝑚(𝑏𝑛) → 𝑑𝑜𝑚(𝑏), such that 𝑏 and 𝑏𝑖 ∈ β, 𝑖 = 1, … , 𝑛. ∎

Before the definition of a MVDW could be given, it is necessary to define some concepts

informally introduced in the previous section formally.

Definition 2 (Level version schema). The schema of a level version 𝐿𝑣 is denoted as

𝐿𝑣(𝐴𝑘: 𝑏𝑘, 𝐴1: 𝑏1, … , 𝐴𝑛: 𝑏𝑛), where, 𝐿𝑣 is the level version name, 𝐴𝑘 is the name of the key

attribute with base type 𝑏𝑘 ∈ β, and each 𝐴𝑖, 𝑖 = 1, … , 𝑛, is an attribute name and it has a base

type 𝑏𝑖 ∈ β. All attribute names are unique in 𝐿𝑣, and the function 𝑎𝑡𝑡𝑟𝑖𝑏𝑁𝑎𝑚𝑒𝑠: 𝐿𝑣 →
{𝐴1, … , 𝐴𝑛} gives a set of all attribute names of level version 𝐿𝑣. ∎

Definition 3 (Level version instance). An instance ⟦𝐿𝑣⟧ of level version 𝐿𝑣 from Def. 2 is a set

of level members defined by ⟦𝐿𝑣⟧ ⊂ {𝑘 × 𝑎1 × … × 𝑎𝑛 ∣ 𝑘 ∈ 𝑑𝑜𝑚(𝑏𝑘) ∧ 𝑎𝑖 ∈ 𝑑𝑜𝑚(𝑏𝑖), 𝑖 =

1, … , 𝑛} ∪ {𝑙}̅ where 𝑙 ̅is the default member of 𝐿𝑣. The set of the key values of ⟦𝐿𝑣⟧ is denoted

by ⟦𝐿𝑣⟧κ = {𝑙. 𝑘 ∣ 𝑙 ∈ ⟦𝐿𝑣⟧}. ∎

Definition 4 (Metalevel schema). The schema of a metalevel 𝐿𝑚𝑒𝑡𝑎 is

𝐿𝑚𝑒𝑡𝑎 (𝐴𝑘: 𝑏𝑘, (𝐴1: 𝑏1, 𝑓𝐿1
), … , (𝐴𝑛: 𝑏𝑛, 𝑓𝐿𝑛

)), where 𝐿𝑚𝑒𝑡𝑎 is the metalevel name, 𝐴𝑘 is the

name of the key attribute, and it has a base type 𝑏𝑘 ∈ β, each 𝐴𝑖 , 𝑖 = 1, … , 𝑛, is an attribute name

and it has a base type 𝑏𝑖 ∈ β, and 𝑓𝐿𝑖
 is a coercion function as defined in Def. 1, and

𝑅𝑎𝑛𝑔𝑒(𝑓𝐿𝑖
) = 𝑑𝑜𝑚(𝑏𝑖). All attribute names are unique in 𝐿𝑚𝑒𝑡𝑎, and the function

𝑎𝑡𝑡𝑟𝑖𝑏𝑁𝑎𝑚𝑒𝑠: 𝐿𝑚𝑒𝑡𝑎 → {𝐴1, … , 𝐴𝑛} gives a set of all attribute names of 𝐿𝑚𝑒𝑡𝑎. ∎

Definition 5 (Metalevel instance). The instance ⟦𝐿𝑚𝑒𝑡𝑎⟧ of metalevel 𝐿𝑚𝑒𝑡𝑎 from Def. 4 is a set

of level members defined by ⟦𝐿𝑚𝑒𝑡𝑎⟧ = ⟦𝐿𝑚𝑒𝑡𝑎̂⟧ ∪ {𝑙}̅, where 𝑙 ̅is the default member of 𝐿𝑚𝑒𝑡𝑎,

and ⟦𝐿𝑚𝑒𝑡𝑎̂⟧ ⊂ {𝑘 × 𝑔(𝑎1) × … × 𝑔(𝑎𝑛) ∣ 𝑘 ∈ 𝑑𝑜𝑚(𝑏𝑘) ∧ 𝑎𝑖 ∈ 𝑑𝑜𝑚(𝑏𝑖), 𝑖 = 1, … , 𝑛}, such

that

𝑔(𝑎𝑖) = {
𝑓𝐿𝑖

(𝑥1, … , 𝑥𝑝), 𝑖𝑓 𝑎𝑖 =⊥

𝑎𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Further, ⟦𝐿𝑚𝑒𝑡𝑎⟧ satisfies the key constraint, that is, ∀𝑙1, 𝑙2 ∈ ⟦𝐿𝑚𝑒𝑡𝑎⟧, 𝑙1 ≠ 𝑙2 ⇒ 𝑙1. 𝑘 ≠ 𝑙2. 𝑘.

The set of the key values of ⟦𝐿𝑚𝑒𝑡𝑎⟧ is denoted by ⟦𝐿𝑚𝑒𝑡𝑎⟧κ = {𝑙. 𝑘 ∣ 𝑙 ∈ ⟦𝐿𝑚𝑒𝑡𝑎⟧}. ∎

Definition 6 (Level Schema). The schema of a level is 𝐿(𝐿𝑚𝑒𝑡𝑎, ℒ𝓋 , χ𝐿), where 𝐿 is the name of

the level, 𝐿𝑚𝑒𝑡𝑎 is a metalevel as in Def. 4, ℒ𝓋 = {𝐿𝑣1
, … , 𝐿𝑣𝑛

} is a set of level versions and a

level version 𝐿𝑣 ∈ ℒ𝓋 (given in Def. 2), and χ𝐿 = {λ1, … , λ𝑛} is a set of functions such that

λ𝑗: 𝑎𝑡𝑡𝑟𝑖𝑏𝑁𝑎𝑚𝑒𝑠 (𝐿𝑣𝑗
) → 𝑎𝑡𝑡𝑟𝑖𝑏𝑁𝑎𝑚𝑒𝑠(𝐿𝑚𝑒𝑡𝑎), 𝑗 = 1, … , 𝑛, is a total function. Furthermore,

all level versions in 𝐿 include the same key attribute 𝐴𝑘. ∎

Example 1. At 𝑡4, the schema of level Customer is Customer(Customermeta,

ℒ𝓋={Customerv1, Customerv2}, χ𝐿 = {λ1, λ2}). The schema of Customermeta is

Customermeta(CustomerID: Integer, (Name: String, 𝑓𝑁𝑎𝑚𝑒), (Address: String, 𝑓𝐴𝑑𝑑𝑟𝑒𝑠𝑠) ,

(PostalCode:Integer, 𝑓𝑝𝑜𝑠𝑡𝐶𝑜𝑑𝑒), (CustomerType:String, 𝑓𝑐𝑢𝑠𝑡𝑇𝑦𝑝𝑒)), and CustomerID is the

name of the key attribute. The schema of Customerv1 is Customerv1 (CustomerID: Integer,

Name: String, Address:String, PostalCode:Integer), and the schema of Customerv2 is

Customerv2 (CustomerID: Integer, CustomerName: String, Address:String,

PostalCode:Integer, CustomerType:Integer). The function λ2 maps the attributes of

Customerv2 to attributes of Customermeta as follows: λ2 ={(CustomerID, CustomerID),

(CustomerName, Name), (Address, Address), (PostalCode, PostalCode),

(CustomerType, CustomerType)}.

Definition 7 (Level instance). The instance ⟦𝐿⟧ of a level 𝐿 from Def.6 consists of the instance

of its metalevel ⟦𝐿𝑚𝑒𝑡𝑎⟧ and the instance ⟦𝐿𝑣⟧ of each of its level versions 𝐿𝑣 ∈ ℒ𝓋. The

instances ⟦𝐿𝑚𝑒𝑡𝑎⟧ and ⟦𝐿𝑣⟧ are as defined in Def. 3 and 5, respectively. Additionally, each level

member in ⟦𝐿𝑚𝑒𝑡𝑎⟧ is present in ⟦𝐿𝑣⟧, that is, ⟦𝐿𝑚𝑒𝑡𝑎⟧κ = ⟦𝐿𝑣⟧κ . Furthermore, ∀𝑙 ∈
⟦𝐿𝑣⟧, ∃𝑙′ ∈ ⟦𝐿𝑚𝑒𝑡𝑎⟧, such that 𝑙. 𝐴 = 𝑙′. 𝐴′, such that (𝐴, 𝐴′) ∈ λ𝑣. ∎

Example 2. The level instance ⟦Customer⟧ consists of the instance of metalevel Customermeta

and its version instances ⟦Customerv1⟧ and ⟦Customerv2⟧, are shown in a tabular format in

Figure 4 and Figure 5, respectively.

Definition 8 (Aggregation relationship schema). The schema of an aggregation relationship is

𝑅(𝑅𝑣1
, … , 𝑅𝑣𝑛

), where 𝑅 is the aggregation relationship name, and each 𝑅𝑣𝑖
, 𝑖 = 1, … , 𝑛, is an

aggregation relationship version. The schema of each 𝑅𝑣𝑖
 is 𝑅𝑣𝑖

(𝐿𝑐, 𝐿𝑝, 𝑐𝑎𝑟𝑑, 𝑓𝑅𝑖
), where 𝑅𝑣𝑖

 is

the aggregation relationship version name, 𝐿𝑐 , 𝐿𝑝 are level versions of levels 𝐿 and 𝐿′,

respectively, 𝑐𝑎𝑟𝑑 ∈ 𝐶𝑎𝑟𝑑 specifies the cardinality of the relationship between the child 𝐿𝑐 and

the parent level 𝐿𝑝, and 𝑓𝑅𝑖
: ⟦𝐿𝑐⟧κ → ⟦𝐿𝑝⟧

𝜅
 is a coercion function as in Def.1. Moreover, each

𝑅𝑣𝑖
 is defined between the versions of 𝐿 and 𝐿′. Also, if 𝐿 = 𝐿′ then 𝐿𝑐 = 𝐿𝑝, meaning that a

recursive aggregation relationship cannot be created between different versions of a level.

Finally, the function 𝑙𝑒𝑣𝑒𝑙𝑠(𝑅𝑣𝑖
) returns the tuple (𝐿𝑐 , 𝐿𝑝). ∎

Example 3. The schema of aggregation relationship Customer_City_Lives after 𝑡4 is

Customer_City_Lives(Customer_City_Livesv1 , Customer_City_Livesv2). The schema of

each aggregation relationship version is Customer_City_Livesv1 (Customerv1, Cityv1, m-1,

𝑓𝑅1), and Customer_City_Livesv2 (Customerv2 , Cityv1 , m-m, 𝑓𝑅2), respectively. The

aggregation relationship is created between versions of Customer and City active at 𝑡4, which

are, Customerv2 and Cityv1.

Definition 9 (Aggregation relationship instance). The instance ⟦𝑅⟧ of an aggregation

relationship from Def. 8 is ⟦𝑅⟧(⟦𝑅𝑣1
⟧, … , ⟦𝑅𝑣𝑛

⟧), where ⟦𝑅𝑣𝑖
⟧, 𝑖 = 1, … , 𝑛, is an instance of

each of its versions 𝑅𝑣𝑖
. An aggregation relationship instance ⟦𝑅𝑣𝑖

⟧ of schema

𝑅𝑣𝑖
(𝐿𝑐, 𝐿𝑝, 𝑐𝑎𝑟𝑑, 𝑓𝑅𝑖

), is a relation defined by 𝑅𝑣𝑖
= ⟦𝑅𝑣𝑖

̂ ⟧ ∪ (𝑙𝑐̅. 𝑘, 𝑙𝑝̅. 𝑘), where ⟦𝑅𝑣𝑖
̂ ⟧ ⊂

⟦𝐿𝑐⟧𝜅 × ⟦𝐿𝑝⟧
𝜅

, 𝑎𝑛𝑑 𝑙𝑐̅ ∈ ⟦𝐿𝑐⟧ and 𝑙𝑝̅ ∈ ⟦𝐿𝑝⟧ are the default members of level versions 𝐿𝑐 and

𝐿𝑝, respectively. If 𝑙𝑐 ∈ ⟦𝐿𝑐⟧𝜅 , 𝑙𝑝 ∈ ⟦𝐿𝑝⟧
𝜅

, 𝑎𝑛𝑑(𝑙𝑐, 𝑙𝑝) ∉ ⟦𝑅𝑣𝑖
⟧, then (𝑙𝑐, 𝑓𝑅𝑖

(𝑙𝑐)) ∈ ⟦𝑅𝑣𝑖
⟧,

where 𝑓𝑅𝑖
(𝑙𝑐) provides a default parent for the orphan child member 𝑙𝑐. Further, 𝑅𝑣𝑖

 satisfies the

cardinality constraint 𝑐𝑎𝑟𝑑. Moreover, ⟦𝑅⟧ satisfies the aggregation consistency constraint, that

is, given versions 𝑅𝑖 and 𝑅𝑗 of 𝑅, ∀(𝑙𝑐, 𝑙𝑝) ∈ ⟦𝑅𝑖⟧, ∃(𝑙𝑐, 𝑙𝑝
′) ∈ ⟦𝑅𝑗⟧ and (𝑙𝑐, 𝑙𝑝

′) ∈ ⟦𝑅𝑖⟧.∎

Example 4. An aggregation relationship instance for ⟦Customer_City_Lives⟧ consists of the

instances of its two versions as follows. ⟦Customer_City_Livesv1⟧ = {(c1, Brussels),(c2, Antwerp

City)...,(cn, Brussels), (cdefault, Default)}, and ⟦Customer_City_Livesv2⟧ = {(c1 ,Brussels), (c1 ,

Antwerp),(c2, Antwerp City)...,(cn, Brussels), (cdefault, Default)}. The second version of the

aggregation relationship allows m-m relationships. As shown in Figure 10, the aggregation

consistency constraint ensures that in each version instance, there is at least one common

customer to city assignment.

Figure 10 An example instance of two version of Customer_City_Lives.

Definition 10 (Roll-up hierarchy schema). The schema of a roll-up hierarchy is 𝐻(𝐻𝑣1
, … , 𝐻𝑣𝑛

),

where 𝐻 is the roll-up hierarchy name, and each 𝐻𝑣𝑖
, 𝑖 = 1, … , 𝑛, is a hierarchy version. The

schema of each roll-up hierarchy version 𝐻𝑣𝑖
 is 𝐻𝑣𝑖

(𝑅1
′ , … , 𝑅𝑚

′), where each 𝑅𝑗
′, 𝑗 = 1, … , 𝑚, is

an aggregation relationship version as in Def. 8, and 𝑅𝑗
′. 𝐿𝑝 = 𝑅𝑗+1

′ . 𝐿𝑐 , 𝑗 = 1, … , 𝑚 − 1. This

constraint ensures that the parent level of aggregation relationship version 𝑅𝑗
′ is the same as the

child level of the next relationship version 𝑅𝑗+1
′ , except for the last level of the hierarchy. The

base level of the hierarchy version 𝐻𝑣𝑗
 is denoted 𝐿𝑏 = 𝑅1

′ . 𝐿𝑐. Also, 𝐿𝑡 = 𝑅𝑛
′ . 𝐿𝑝 is called the

top level of 𝐻𝑣𝑗
. Furthermore, given the relation 𝑃 = {𝑙𝑒𝑣𝑒𝑙(𝑅1

′), … , 𝑙𝑒𝑣𝑒𝑙(𝑅𝑛
′), }, 𝑃𝑣𝑖

∗ is the

transitive closure of 𝑃, meaning that if relations (𝐿𝑐 , 𝐿𝑝) and (𝐿𝑝, 𝐿𝑝
′) exist in 𝑃 then (𝐿𝑐, 𝐿𝑝

′) ∈

𝑃𝑣𝑖

∗ . ∎

Example 5. The schema of the roll-up hierarchy Categories after 𝑡4 is Categories(Categoriesv1

, Categoriesv2), and the schemas of hierarchy versions are Categoriesv1 (Product_Categoryv1

), and Categoriesv2 (Product_SubCategoryv1 , Product_SubCategoryv1,

SubCategory_Categoryv1), respectively.

Definition 11 (Roll-up hierarchy instance). The instance ⟦𝐻⟧ of a roll-up hierarchy from Def. 10

is (⟦𝐻𝑣1
⟧, … , ⟦𝐻𝑣𝑛

⟧), where each⟦𝐻𝑣𝑖
⟧, 𝑖 = 1, … , 𝑛, is an instance of hierarchy version 𝐻𝑣𝑖

. The

instance of ⟦𝐻𝑣𝑖
⟧ is given by ⟦𝐻𝑣𝑖

⟧ = ⟦𝑅1
′ ⟧ ∪ … ∪ ⟦𝑅𝑚

′ ⟧, where ⟦𝑅𝑗
′⟧, 𝑗 = 1, … , 𝑚 is an

aggregation relationship version as in Def. 9. Moreover, ⟦𝐻𝑣𝑖
⟧

∗
 denotes the transitive closure

of ⟦𝐻𝑣𝑖
⟧ meaning that if relations (𝑙, 𝑙′), (𝑙′, 𝑙′′) ∈ ⟦𝐻𝑣𝑖

⟧ then relation (𝑙, 𝑙′′) ∈ ⟦𝐻𝑣𝑖
⟧

∗
.

Further𝑑𝑓𝑙𝑐
= {𝑙𝑡 ∣ 𝑙𝑐 ∈ 𝐻𝑣𝑖

. ⟦𝐿𝑏⟧ ∧ 𝑙𝑡 ∈ 𝐻𝑣𝑖
. ⟦𝐿𝑡⟧ ∧ (𝑙𝑐 . 𝑘, 𝑙𝑡. 𝑘) ∈ ⟦𝐻𝑣𝑖

⟧
∗
}, is the distribution

factor of a base level member 𝑙𝑐 of hierarchy version 𝐻𝑣𝑛
. For all 𝐻𝑣𝑖

, 𝐻𝑣𝑗
∈ 𝐻, and ∀(𝐿𝑐, 𝐿𝑝) ∈

𝑃𝑣𝑖

∗ and (𝐿𝑐
′ , 𝐿𝑝

′) ∈ 𝑃𝑣𝑗

∗ , where 𝐿𝑐, and 𝐿𝑐
′ are versions of the level 𝐿 and 𝐿𝑝, 𝐿𝑝

′ are versions of

level 𝐿′, the hierarchy consistency constraint holds, that is ∀(𝑙𝑐, 𝑙𝑝) ∈ ⟦𝐻𝑣𝑖
⟧

∗
, ∃(𝑙𝑐

′ , 𝑙𝑝
′) ∈ ⟦𝐻𝑣𝑗

⟧
∗

such that 𝑙𝑐 = 𝑙𝑐
′ and (𝑙𝑐

′ , 𝑙𝑝
′) ∈ ⟦𝐻𝑣𝑖

⟧
∗
, where 𝑙𝑐 ∈ ⟦𝐿𝑐⟧κ, 𝑙𝑐

′ ∈ ⟦𝐿𝑐
′ ⟧κ, 𝑙𝑝 ∈ ⟦𝐿𝑝⟧

,
and𝑙𝑝

′ ∈ ⟦𝐿𝑝
′ ⟧

𝜅
.

∎

Example 6. An instance of Categories hierarchy is (⟦Categoriesv1⟧, ⟦Categoriesv2⟧), and

⟦Categoriesv1⟧ = ⟦Product_Categoryv1⟧ and ⟦Categoriesv2⟧ =

 ⟦Product_SubCategoryv1
⟧ ∪ ⟦SubCategory_Categoryv1

⟧. Since it is possible to reach from

Product to Category in both hierarchy versions, the hierarchy consistency constraint ensures

that both paths get to the same category for a given product.

Definition 12 (Fact version schema). The schema of a fact version 𝐹𝑣 is defined by

𝐹𝑣(𝐾: 𝑏𝑘, 𝒟𝓋 , ℳ𝓋), where 𝐹 is the fact name, 𝐾 is the key attribute name with a base type 𝑏𝑘 ∈

 β, the tuple 𝒟𝓋(𝐷1, … , 𝐷𝑚) defines the dimensions of 𝐹𝑣, and each 𝐷𝑖 ∈ 𝒟, 𝑖 = 1, … , 𝑚, is a pair

𝐷𝑖(𝐿𝑖, 𝑐𝑎𝑟𝑑𝑖) such that 𝐷𝑖 is a dimension name, 𝐿𝑖 is a version level name, 𝑐𝑎𝑟𝑑𝑖 ∈ 𝐶𝑎𝑟𝑑 ∖

{0𝑚 − 0𝑚, 0𝑚 − 𝑚, 𝑚 − 0𝑚, 𝑚 − 𝑚} specifies the cardinality of the relationship between fact

version 𝐹𝑣 and level version 𝐿𝑖. The tuple ℳ𝓋(𝑀1: 𝑂1, … , 𝑀𝑛: 𝑂𝑛) defines the measures of 𝐹𝑣,

where each 𝑀𝑗 ∈ ℳ, 𝑗 = 1, … , 𝑛, is a measure name that has a base type 𝑏𝑖 ∈ β. The key

attribute name 𝐾, a dimension name 𝐷, and a measure name 𝑀 are unique in 𝐹𝑣. The functions

𝑑𝑖𝑚𝑁𝑎𝑚𝑒𝑠: 𝐹𝑣 → {𝐷1, … , 𝐷𝑚}, and 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁𝑎𝑚𝑒𝑠: 𝐹𝑣 → {𝑀1, … , 𝑀𝑛} give the dimensions

and measure names of 𝐹𝑣, respectively. ∎

Definition 13 (Fact version instance). A fact version instance ⟦𝐹𝑣⟧ of a fact version 𝐹𝑣 from Def.

12 is a set of fact members defined by ⟦𝐹𝑣⟧ ⊂ {𝑘 × 𝑙1 × … × 𝑙𝑚 × 𝑚1 × … × 𝑚𝑛 ∣ 𝑘 ∈

𝑑𝑜𝑚(𝑏𝑘), 𝑙𝑖 ∈ ⟦𝐿𝑖⟧κ, 𝑚𝑗 ∈ 𝑑𝑜𝑚(𝑏𝑗) ∧ 𝑖 = 1, … , 𝑚 ∧ 𝑗 = 1, … , 𝑛}. The tuple

𝑒(𝑓. 𝑘, 𝑓. 𝑙1, … , 𝑓. 𝑙𝑚), 𝑓 ∈ ⟦𝐹𝑣⟧ is an m-dimensional cell, which is a placeholder for the values of

n measures. Each 𝑒. 𝑙𝑖, 𝑖 = 1, … , 𝑚, is called a coordinate value for the dimension 𝐷𝑖 of the cell.

The fact version instance ⟦𝐹𝑣⟧ satisfies the cardinality constraint like defined above for the

aggregation relationship version instances. The set of the key values of a fact instance is denoted

by ⟦𝐹𝑣⟧κ = {𝑓. 𝑘 ∣ 𝑓 ∈ ⟦𝐹𝑣⟧}. ∎

Definition 14 (Metafact schema). The schema of a metafact 𝐹𝑚𝑒𝑡𝑎 is 𝐹𝑚𝑒𝑡𝑎(𝐾: 𝑏𝑘 , 𝒟, ℳ), where

𝐹𝑚𝑒𝑡𝑎 is a metafact name, 𝐾 is the name of the key attribute, and it has a base type 𝑏𝑘 ∈ β, the

tuple 𝒟(𝐷1, … , 𝐷𝑚) defines the dimensions of 𝐹𝑚𝑒𝑡𝑎, and each 𝐷𝑖 ∈ 𝒟, 𝑖 =

1, … , 𝑚, 𝑖𝑠 𝑎 𝑡𝑢𝑝𝑙𝑒 𝐷𝑖(𝐿𝑖 , 𝑓𝐷𝑖
, 𝑐𝑎𝑟𝑑𝑖) such that 𝐷𝑖 is a dimension name, 𝐿𝑖 is a metalevel name,

𝑓𝐷𝑖
 is a coercion function, and 𝑐𝑎𝑟𝑑𝑖 ∈ 𝐶𝑎𝑟𝑑 ∖ {0𝑚 − 0𝑚, 0𝑚 − 𝑚, 𝑚 − 0𝑚, 𝑚 − 𝑚} specifies

the cardinality of the relationship between fact version 𝐹𝑚𝑒𝑡𝑎 and level 𝐿𝑖. The tuple

ℳ ((𝑀1: 𝑂1, 𝑓𝑀1
) … , (𝑀𝑛: 𝑂𝑛, 𝑓𝑀𝑚

)) defines the measures of 𝐹𝑚𝑒𝑡𝑎, where each 𝑀𝑗 ∈ ℳ, 𝑗 =

1, … , 𝑛, is a measure name that has a base type 𝑏𝑖 ∈ β, and 𝑓𝑀𝑗
 is a coercion function. The key

name 𝐾, a dimension name 𝐷, and a measure name 𝑀 are unique in 𝐹𝑀. The functions

𝑑𝑖𝑚𝑁𝑎𝑚𝑒𝑠: 𝐹𝑚𝑒𝑡𝑎 → {𝐷1, … , 𝐷𝑚} and 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁𝑎𝑚𝑒𝑠: 𝐹𝑚𝑒𝑡𝑎 → {𝑀1, … , 𝑀𝑛} give the

dimensions and measure names of 𝐹𝑚𝑒𝑡𝑎, respectively.

Definition 15 (Metafact instance). The instance ⟦𝐹𝑚𝑒𝑡𝑎⟧ of a metalevel from Def. 14 is a set of

fact members defined by ⟦𝐹𝑚𝑒𝑡𝑎⟧ ⊂ {𝑘 × 𝑔(𝑙1) × … × 𝑔(𝑙𝑚) × ℎ(𝑚1) × … × ℎ(𝑚𝑛) ∣ 𝑘 ∈

𝑑𝑜𝑚(𝑏𝑘) ∧ 𝑙𝑖 ∈ ⟦𝐿𝑖⟧κ ∧ 𝑚𝑗 ∈ 𝑑𝑜𝑚(𝑏𝑗) ∧ 𝑖 = 1, … , 𝑚 ∧ 𝑗 = 1, … , 𝑛}, such that

𝑔(𝑙𝑖) = {
𝑓𝐷𝑖

(𝑥1, … , 𝑥𝑝), 𝑖𝑓 𝑙𝑖 =⊥

𝑙𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

and

ℎ(𝑚𝑗) = {
𝑓𝑀𝑗

(𝑥1, … , 𝑥𝑞), 𝑖𝑓 𝑚𝑗 =⊥

𝑚𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Further, ⟦𝐹𝑚𝑒𝑡𝑎⟧ satisfies the key constraint and the cardinality constraints like as defined above

for the level version instances and the aggregation relationship instances. The set of the key

values of ⟦𝐹𝑚𝑒𝑡𝑎⟧ is denoted by ⟦𝐹𝑚𝑒𝑡𝑎⟧κ = {𝑓. 𝑘 ∣ 𝑓 ∈ ⟦𝐹𝑚𝑒𝑡𝑎⟧}.

Definition 16 (Fact schema). The schema of a fact is 𝐹(𝐹𝑚𝑒𝑡𝑎, ℱ𝓋 , χ𝐷 , χ𝑀), where 𝐹 is the fact

name, 𝐹𝑚𝑒𝑡𝑎 is the metafact as defined in Def. 14, ℱ𝓋 = {𝐹𝑣1
, … , 𝐹𝑣𝑛

} is a set of fact versions, and

each fact version is as defined in Def. 12, χ𝐷 = {δ1, … , δ𝑛} is a set of functions, where a

δ𝑖: 𝑑𝑖𝑚𝑁𝑎𝑚𝑒𝑠(𝐹𝑣𝑖
) → 𝑑𝑖𝑚𝑁𝑎𝑚𝑒𝑠(𝐹𝑚𝑒𝑡𝑎), 𝑖 = 1, … , 𝑛, is a total function. Finally, χ𝑀 =

{μ1, … , μ𝑛} is a set of functions, where a μ𝑗: 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁𝑎𝑚𝑒𝑠 (𝐹𝑣𝑗
) →

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑁𝑎𝑚𝑒𝑠(𝐹𝑚𝑒𝑡𝑎), 𝑗 = 1, … , 𝑛, is a total function. Moreover, all fact versions in ℱ𝓋 have

the same key attribute 𝐾.

Example 7. At 𝑡4, the schema of fact Sales is Sales(Salesmeta, ℱ𝓋 = {Salesv1,Salesv2}, χ𝐷 =

{δ1, δ2}, χ𝑀 = {μ1, μ2}). The schema of Salesmeta is Salesmeta(𝐾, 𝒟, 𝑀), and 𝐾 = SalesID

:Integer. The dimensions in Salesmeta are 𝒟(Customer, SalesMonth, SalesDate,

ShippedDate, Product, Store), and the measures are ℳ(Quantity: Integer, Discount :

Decimal, SalesAmount: Integer, NetAmount: Decimal, Freight: Decimal). Similarly, the

schema of fact version Salesv2 is 𝐾 = SalesID:Integer, 𝒟(Product, Customer, SalesDate,

ShipDate), and the measures are ℳ(Quantity: Integer, Discount: Decimal, SalesAmount:

Integer, NetAmount: Decimal, Freight: Decimal). Functions δ2 ∈ χ𝐷 and λ2 ∈ χ𝑀 establish

the mapping between the dimensions and measures of fact version Salesv2 and Salesmeta,

respectively.

Definition 17 (Fact instance). The instance ⟦𝐹⟧ of a fact 𝐹 from Def. 16 consists of the instance

of its metafact ⟦𝐹𝑚𝑒𝑡𝑎⟧, and the instance ⟦𝐹𝑣⟧ of each of its fact versions 𝐹𝑣 ∈ ℱ𝓋. The instance

⟦𝐹𝑚𝑒𝑡𝑎⟧ and ⟦𝐹𝑣⟧ are as defined in Def. 15 and 13, respectively. Additionally, each fact member

in ⟦𝐹𝑚𝑒𝑡𝑎⟧ is present in ⟦𝐹𝑣⟧, that is, ⟦𝐹𝑚𝑒𝑡𝑎⟧κ = ⟦𝐹𝑣⟧𝜅. Furthermore, ∀𝑓 ∈ ⟦𝐹𝑣⟧, ∃𝑓′ ∈ ⟦𝐹𝑚𝑒𝑡𝑎⟧,

such that 𝑓. 𝐷 = 𝑓′. 𝐷′, and 𝑓. 𝑀 = 𝑓. 𝑀′, where (𝐷, 𝐷′) ∈ δ𝑣 and (𝑀, 𝑀′) ∈ μ𝑣. ∎

Example 8. The fact instance ⟦Sales⟧ consists of the instance of meatfact ⟦Salesmeta⟧ (Figure

11) and its version instances ⟦Salesv1⟧ (Figure 12) and ⟦Salesv2⟧ (Figure 13). In figures, the

fact members loaded after 𝑡4 are shaded in gray.

Figure 11 Instance of metafact Salesmeta after 𝑡4.

Figure 12 Instance of fact version Salesv1 after 𝑡4.

Figure 13 Instance of fact version Salesv2 after 𝑡4.

Definition 18 (Data warehouse version schema). A DW version schema is 𝑉(ℒ𝓋 , ℛ𝓋 , ℋ𝓋 , ℱ𝓋),

where 𝑉 is the schema version name, ℒ𝓋 = {𝐿1, … , 𝐿𝑚} is a set of level versions and all level

versions in ℒ𝓋 have a unique name and have the same base type 𝑏𝑘 for key attribute 𝐴𝑘. ℛ𝓋 =

{𝑅1, … , 𝑅𝑛} is a set of aggregation relationships versions between level versions in ℒ𝓋, and all

aggregation relationship version names are unique in ℛ𝓋. ℋ𝓋 = {𝐻1, … , 𝐻𝑝} is a set of

hierarchies defined over aggregation relationship versions in ℛ𝓋 and all hierarchy names in ℋ𝓋

are unique, and ℱ𝓋 = {𝐹1, … , 𝐹𝑞} is a set of fact versions, and all fact version names are unique in

ℱ𝓋. Furthermore, only one version of a level, aggregation relationship, roll-up hierarchy, and fact

can be present in ℒ𝓋 , ℛ𝓋 , ℋ𝓋, and ℱ𝓋, respectively. ∎

Example 9. The schema of a DW version 𝑉2 is 𝑉2(ℒ𝓋 , ℛ𝓋 . ℋ𝓋 , ℱ𝓋), where ℒ𝓋 = {Customerv2,

Cityv1, Dayv1, Productv1, Statev1, Countryv1}, ℛ𝓋 = {Customer_City_Worksv1,

Customer_City_Livesv2, Product_Categoryv1, City_Statev1, State_Countryv1},

ℋ𝓋 ={Categoriesv2, Livesv_2, Worksv1} and ℱ𝓋 = {Salesv2}.

Definition 19 (Data warehouse version instance). The instance ⟦𝑉⟧ of a DW version 𝑉 from Def.

18 is (⟦ℒ𝓋⟧, ⟦ℛ𝓋⟧, ⟦ℋ𝓋⟧, ⟦ℱ𝓋⟧), where ⟦ℒ𝓋⟧ = {⟦𝐿1⟧, … , ⟦𝐿𝑚⟧} is a set of level version

instances, ⟦ℛ𝓋⟧ = {⟦𝑅1⟧, … , ⟦𝑅𝑛⟧} is a set of aggregation relationship version instances,

⟦ℋ𝓋⟧ = {⟦𝐻1⟧, … , ⟦𝐻𝑝⟧} is a set of hierarchy version instances, and ⟦ℱ⟧ = {⟦𝐹1⟧, … , ⟦𝐹𝑞⟧} is a

set of fact version instances. ∎

Definition 20 (Multiversion data warehouse schema). A MVDW schema is 𝒮(ℒ, ℛ, ℱ, 𝒱), where

𝒮 is the MVDW schema name, ℒ = {𝐿1, … , 𝐿𝑚} is a set of levels and each 𝐿𝑖 , 𝑖 = 1, … , 𝑚, is a

level as in Def. 6. ℛ = {𝑅1, … , 𝑅𝑛} is a set of aggregation relationships and each 𝑅𝑖 , 𝑖 = 1, … , 𝑛,

is an aggregation relationship as in Def. 8, ℋ = {𝐻1, … , 𝐻𝑝} is a set of hierarchies and each

𝐻𝑖, 𝑖 = 1, … , 𝑝, is a hierarchy as defined in Def. 10, ℱ = {𝐹1, … , 𝐹𝑞} is a set of MV facts and each

SalesKey Customer Product SalesMonth SalesDate ShipDate Store Quantity … Freight

1 c1 p1 m1 t1 t2 st1 10 … 0.0

… … … … … … … … … …

10 c1 p3 m1 t1 t1 stdefault 5 … 5.0

… … … … … … … … … …

SalesKey Customer Product SalesMonth Store Quantity SalesAmount NetAmount

1 c1 p1 m1 st1 10 50 60

… … … … … … … …

10 c1 p3 m1 stdefault 5 25 27.5

… … … … … … … …

SalesKey Customer Product SalesDate ShipDate Quantity SalesAmount NetAmount Freight

1 c1 p1 t1 t2 10 50 60 0

… … … … … … … … …

10 c1 p3 t1 t1 5 25 27.5 5

… … … … … … … … …

𝐹𝑖 , 𝑖 = 1, … , 𝑞, is a fact as defined in Def. 16, and 𝒱 = {𝑉1, … , 𝑉𝑠} is a set of DW versions and

each 𝑉𝑖, 𝑖 = 1, … , 𝑠, is a DW version as in Def. 18. ∎

Definition 20 (Multiversion data warehouse instance). A MVDW instance ℐ is

(⟦ℒ⟧, ⟦ℛ⟧, ⟦ℱ⟧, ⟦𝒱⟧), where ⟦ℒ⟧ = {⟦𝐿1⟧, … , ⟦𝐿𝑛⟧} is a set of level instances and each

⟦𝐿𝑖⟧, 𝑖 = 1, … , 𝑚, is a level instance as defined in Def. 7; ⟦ℛ⟧ = {⟦𝑅1⟧, … , ⟦𝑅𝑛⟧} is a set of

MV aggregation relationship instances and each ⟦𝑅𝑖⟧, 𝑖 = 1, … , 𝑛, is an aggregation relationship

instance as defined in Def. 9; ⟦ℋ⟧ = {⟦𝐻1⟧, … , ⟦𝐻𝑝⟧} is a set of hierarchy instances and each

⟦𝐻𝑘⟧, 𝑘 = 1, … , 𝑝, is a hierarchy instance as defined in Def.11; ⟦ℱ⟧ = {⟦𝐹1⟧, … , ⟦𝐹𝑞⟧} is a set

of fact instances and each ⟦𝐹𝑖⟧, 𝑖 = 1, … , 𝑞, is a fact instance as defined in Def. 17; and ⟦𝒱⟧ =

 {⟦𝑉1⟧, … , ⟦𝑉𝑠⟧} is a set of DW version instances and each ⟦𝑉𝑖⟧, 𝑖 = 1, … , 𝑠, is a DW version

instance as in Def. 19. ∎

OLAP Operations in a Multiversion Data Warehouse

Typically, the MD data is exploited using the so-called OLAP operators. The syntax and

semantics of these operators are given in (Ahmed, Zimányi, Vaisman, & Wrembel, 2020). Each

OLAP operation takes as an input a MD data structure, adds a new fact schema and fact instance

to the input MD data structure, and returns the result as a new MD data structure. In this way, the

output of one operator can be the input of another operator, and the combination of these

operators defines a closed OLAP algebra. It is remarked that each DW version 𝑉 from Def. 18 is

an independent MD data structure. Thus, the OLAP operations can be performed on individual

DW versions.

Next, it is shown how the OLAP operators can be applied on a DW version model using the

Roll-up operator as an example. The roll-up operation summarizes a measure from a lower level

to a higher hierarchy level, using an aggregate function. For example, consider the example

MVDW and the query: Total quantity sold for each product in the city where a store was

located. This query requires a roll-up operation over dimension Store up to level City along

hierarchy Locationv1. Further, this operation is only available using the DW version 𝑉1 as the

level Store was removed in version 𝑉2. The syntax of such an operation is as follows.

• Roll-up:(𝑉1, Salesv1, Product, Locationv1, (Quantity:sum)) → Sales'v1.

The operation adds a new fact Sales'v1 to 𝑉1. In Sales'v1, stores are grouped into their respective

cities. Since the fact members stored using 𝑉2 did not have dimension Store, a coercion function

links such members to default store member.

As shown in Figure 14, the default store is linked to the Default member of level version Cityv1

in the aggregation relationship version Store_Cityv1. For each city, the Quantity of all products

stored in this city is aggregated using the function sum, where all other dimension values are the

same. For Store_Cityv1, and the initial fact Sales from Figure 15, the result is shown in Figure

16. Note that in Sales'v1, keys from level Store are replaced with keys from level version Cityv1

and all measures except Quantity are removed.

Figure 14 Aggregation relationship Store_Cityv1.

Figure 15 Fact Salesv1 before roll-up.

Figure 16 The result of roll-up operation.

IMPLEMENTING A MULTIVERSION DATA WAREHOUSE IN RELATIONAL

DATABASES

Since most DW are implemented in RDBMS, it appears reasonable to implement a MVDW over

a traditional RDBMS. This section shows a translation from the formal MVDW model to a

relational schema. Over this model, it is also demonstrated how the OLAP operations can be

converted to relational operations implemented in standard SQL.

Relational Schema Mapping

Figure 17 shows the relational representation of metalevels, metafact, and aggregation

relationships of the example MVDW after 𝑡4. The translation is explained next.

Level Mapping: For a level 𝐿 ∈ ℒ, its metalevel and versions are mapped as follows. The

metalevel is mapped to a table 𝑇𝐿 that contains all attributes of the level created in all of its

versions. A surrogate key is added as the primary key of 𝑇𝐿 to map the level's key attribute. Each

level version 𝐿𝑣 ∈ ℒ𝓋 is mapped as a view projecting attributes from 𝑇𝐿 that are present in 𝐿𝑣.

Additional attributes are added to map the aggregation relationships between level versions, and

views corresponding to level versions are also extended with these attributes. For example, in

SalesKey Customer Product Store SalesDate Quantity

1 c1 p1 st1 t1 5

2 c1 p1 st1 t1 10

3 c2 p2 st2 t1 5

4 c2 p2 st3 t1 8

5 c1 p1 stdefault t6 5

6 c1 p1 stdefault t6 6

7 c2 p2 stdefault t10 10

SalesKey Customer Product City SalesDate Quantity

1 c1 p1 Brussels t1 15

2 c1 p2 Brussels t1 5

3 c2 p2 Antwerp t1 8

4 c2 p1 Default t6 11

5 c1 p2 Default t10 10

addition to the level attributes, the attributes CityKeyLives and CityKeyWorks are included in

level version Customerv1 to capture the relationships between Customerv1 and Cityv1.

Fact Mapping: For a fact 𝐹 ∈ ℱ, its metafact and versions are mapped as follows. The metafact

is mapped to a table 𝑇𝐹 that includes as attributes all measures from all of its versions. Further, a

surrogate key is added as a primary key to map the key attribute of the fact. Additional attributes

are also added to 𝑇𝐹 to map the dimensions and link it to all levels providing dimension values.

For example, applying the above rule to fact Sales results in a table containing the surrogate

keys of all levels it has ever been connected to and the corresponding referential integrity

constraints. Each fact version 𝐹𝑣 ∈ ℱ𝓋 is mapped as a view projecting only the attributes from

𝑇𝐹 corresponding to dimensions and measures present in 𝐹𝑣. Figure 17 shows the metalevel and

metafact (in gray) in a relational schema after the schema changes at 𝑡4.

Aggregation Relationship Mapping: A relationship between level version of a level with

metalevel table 𝑇𝐿 and a fact version of a fact with metafact table 𝑇𝐹, or between parent-child

level versions with metalevel tables 𝑇𝑝 and 𝑇𝑐 , respectively, can be mapped in three ways,

depending on its cardinality:

• If the relationship is one-to-one, 𝑇𝐹 or 𝑇𝑐 is extended with all attributes of the 𝑇𝐿 or 𝑇𝑝,

respectively.

• If the relationship is many-to-one, 𝑇𝐹 or 𝑇𝑐 is extended with the surrogate key of 𝑇𝐿 or 𝑇𝑝,

respectively. That is, there is a foreign key in the metafact or the parent metalevel table

pointing to the other metastable.

Figure 17 The metalevels and a metafact in relational schema after schema changes at 𝑡4.

• If the relationship is many-to-many, a new bridge table is created that contains as

attribute the surrogate keys of 𝑇𝑝 and 𝑇𝑐 , respectively. The key of the table is the

combination of both surrogate keys. In Figure 17, the bridge table CustomerLives (in

gray) captures the aggregation relationship Customer_City_Lives.

The instance of a hierarchy version is not explicitly required to be mapped as it can be obtained

by joining the constituting aggregation relationship instances. However, the data dictionary may

include the hierarchy schema that can be exploited by an application to generate the SQL to

obtain the hierarchy instance automatically. Furthermore, the view definitions ensure that the

aggregation consistency constraints are respected.

Coercion Function Mapping: The coercion functions associated with metalevel, metafact, and

aggregation relationship versions, are mapped to user-defined functions. These functions are

called in an after-insert trigger to obtain the default value if the value of an attribute, dimension,

or measure is not available in the inserted row. An SMO may also use a coercion function to

obtain the existing rows' missing values after a schema change. For example, after adding

attribute CustomerType, the SMO uses the coercion function to get the default customer type

for all customers stored using 𝑉1.

Querying a Multiversion Data Warehouse in SQL

This section shows example SQL queries addressing the example MVDW. The example queries

below are selected to show how the typical OLAP operations such as roll-up, slice, and dice can

be performed in a MVDW.

Query1. Compute the total sales per category.

This is a roll-up query that requires aggregating the sales up to level Categoryv1 along the

Categoriesv1 hierarchy. By using 𝑉1, the query can be answered as follows.

SELECT c.CategoryName , SUM(s.SalesAmount) "Total Amount"

FROM SalesV1 s JOIN ProductV1 p ON s.ProductKey = p.ProductKey

JOIN CategoryV1 c ON p.CategoryKey = c.CategoryKey

GROUP BY c.CategoryName;

Since in 𝑉2 the Categoriesv2 hierarchy has an additional level SubCategoriesv1, the sales per

category can be obtained by first performing a roll-up to level SubCategoryv1 and then to

Categoryv1. These roll-up operations in V2 are as follows.

SELECT c.CategoryName , SUM(s.SalesAmount) "Total Amount"

FROM SalesV2 s JOIN ProductV2 p ON s.ProductKey = p.ProductKey

JOIN SubCategoryV1 sc ON p.SubCategoryKey = sc.SubCategoryKey

JOIN CategoryV1 c ON sc.CategoryKey = c.CategoryKey

GROUP BY c.CategoryName;

Query2. Calculate the total yearly sales per store city, for the beverages category.

Since level Store was deleted in 𝑉2, this query is only possible using 𝑉1. This query involves

dice, project, and roll-up operations. First, fact Salesv1 needs to be diced to keep only the sales

of the products that belong to the beverage category. Then, all dimensions except Store and

SalesDate are removed from the fact. After that, the sales can be aggregated using roll-up

operations along Locationv1 and Calendarv1 hierarchies up to levels Cityv1 and Yearv1,

respectively. Note that the sales that were loaded using 𝑉2 will be aggregated to the default city.

The SQL query is given as follows.

SELECT ct.CityName , y.Year, SUM(s.SalesAmount) "Total Amount"

FROM SalesV1 s JOIN StoreV1 st ON s.StoreKey = st.StoreKey

JOIN CityV1 ct ON st.CityKey = ct.CityKey

JOIN ProductV1 p ON s.ProductKey = p.ProductKey

JOIN CategoryV1 c ON p.CategoryKey = c.CategoryKey

JOIN MonthV1 m ON s.SalesMonthKey = m.MonthKey

JOIN YearV1 y ON m.YearKey = y.YearKey

AND CategoryName = 'Beverages'

GROUP BY ct.CityName , y.Year ORDER BY ct.CityName , y.Year;

Query3. Calculate the maximum daily sales per subcategory on weekends.

This query is possible only using 𝑉2 because level SubCategory did not exist in 𝑉1. The query

requires first, dicing fact Salesv2 to keep only the sales that were made on weekends. Then, all

dimensions except Product and SalesDate are removed from the fact. Finally, a roll-up is

performed along the Categoriesv2 hierarchy to find the maximum sales per subcategory. Since

fact Sales in V1 stored monthly sales and the coercion function mapped these sales to the first

day of each month, they will be considered in this query only if the first day of the month is

either Saturday or Sunday.

SELECT sc.SubCatName , d.DayNameWeek , MAX(s.SalesAmount) "Total Amount"

FROM SalesV2 s JOIN ProductV2 p ON s.ProductKey = p.ProductKey

JOIN SubCategoryV1 sc ON p.SubCategoryKey = sc.SubCategoryKey

JOIN DayV1 d ON s.SalesDateKey = d.DateKey

AND d.DayNameWeek IN ('Saturday', 'Sunday')

GROUP BY sc.SubCatName , d.DayNameWeek;

Query4. Compute the total yearly sales per customer's city of residence.

This query can be answered in both versions, and it involves roll-up operations along Live and

Calendar hierarchies. Since only one city per customer can be stored in 𝑉1, all sales of a

customer will be aggregated to a single city only even though a customer may be living in more

than one. The query can be written in SQL for 𝑉1 as below.

SELECT c.CityName , y.Year, SUM(s.SalesAmount) "Total Amount"

FROM SalesV1 s JOIN CustomerV1 u ON s.CustomerKey = u.CustomerKey

JOIN CityV1 c ON u.LiveCityKey = c.CityKey

JOIN MonthV1 m ON s.SalesMonthKey = m.MonthKey

JOIN YearV1 y ON y.YearKey = m.YearKey

GROUP BY c.CityName , y.Year ORDER BY c.CityName , y.Year;

In 𝑉2, the cardinality of the aggregation relationship between Customerv2 and Cityv1 is m-m;

therefore, the sales of each customer need to be distributed among the cities of her residence,

based on the distribution factor. The SQL query for 𝑉2 is given below.

WITH CustCityDF (CustomerKey, df) AS (

SELECT lc.CustomerKey , COUNT(lc.CityKey) "df"

FROM CustomerLiveCityMM lc

GROUP BY lc.CustomerKey)

SELECT c.CityName , y.Year, SUM(s.SalesAmount/cdf.df) "Total Amount"

FROM SalesV2 s JOIN CustomerV2 u ON s.CustomerKey = u.CustomerKey

JOIN CustCityDF cdf ON u.CustomerKey = cdf.CustomerKey

JOIN CustomerLiveCityMM lc ON u.CustomerKey = lc.CustomerKey

JOIN CityV1 c ON lc.CityKey = c.CityKey

JOIN DayV1 d ON s.SalesDateKey = d.DateKey

JOIN MonthV1 m ON d.MonthKey = m.MonthKey

JOIN YearV1 y ON m.YearKey = y.YearKey

GROUP BY c.CityName , y.Year ORDER BY c.CityName , y.Year;

RELATED WORK

Managing structural changes is a long-standing issue in database research (Roddick, Craske, &

Richards, 1993; Roddick, 1995). Quite a few approaches have been presented to deal with

schema changes in relational databases (Curino, Moon, & Zaniolo, 2008; Curino, Moon, Ham, &

Zaniolo, 2009; Curino & Zaniolo, 2010; Moon, Curino, Deutsch, Hou, & Zaniolo, 2008;

Herrmann, Voigt, Pedersen, & Lehner, 2018), in No-SQL databases (Bonifati, et al., 2019), and

in cloud object stores (Armbrust, et al., 2020). Due to space limitations, the remainder of this

section reviews the works explicitly dealing with structural changes in DWs.

Schema Evolution in Data Warehouses

The FIESTA (Blaschka, Sapia, & Höfling, 1999; Blaschka, 2001) framework for schema

evolution management in MD databases, provides a schema design and maintenance

methodology. It includes a high-level evolution algebra to modify the dimensions and fact

schema and adapt the existing instance to the evolved schema.

In (Hurtado, Mendelzon, & Vaisman, 1999; Hurtado, Mendelzon, & Vaisman, 1999), the authors

present a model to support the updates in level and hierarchy contents and schema, and study the

effects of such updates on the materialized views. To manage changes, the model includes a set

of content and schema change operators. The content change operators allow adding and deleting

new level members and regrouping child members to different parent members. The Generalize,

Specialize, Relate, Unrelate, and Delete Level operators are defined for schema changes.

Generalize and Specialize operators add a new non-base and base level to a dimension,

respectively. Relate and Unrelate operators are used to adding and removing a parallel hierarchy,

respectively. The Delete Level operator deletes a given level from the multidimensional schema.

ORE (Jovanovic, Romero, Simitsis, Abelló, & Mayorova, 2014) addresses schema changes due

to changes in the analysis requirements. The approach takes two inputs, namely: (a) a domain

ontology which represents the concepts and properties of the business model; and (b) the analysis

requirements which are called information requirements (IRs). ORE incrementally produces a

DW schema that satisfies the IRs.

Kass et al. (Kaas, Pedersen, & Rasmussen, 2004) studied evolution over star and snowflake

schemas and how instances change in such cases. The following evolution operations are

addressed: insert/delete an attribute into a dimension level, add/remove a level in a dimension,

add/remove measure into a fact, and add/remove a dimension into a fact.

Like the values of dimensions members, the definitions of measures may also evolve. In (Goller

& Berger, 2015), the authors called such measures as slowly changing measures (SCM).

Furthermore, they proposed four design solutions to manage the evolution of measure

definitions: (a) Conscious do-nothing, (b) Recompute; (c) Proactive versioning; and (d) Lazy

amendment. The reader is referred to the bibliography for details.

Schema Versioning in Data Warehouses

TSQL2 (Snodgrass, 1995) has some support for schema versioning, and its schema versioning

model is based on the concept of complete schemata, that is, a relation is defined over the union

of all the attributes ever defined for it, even including the deleted ones. The database versions

can be implemented using the traditional view mechanism on top of the complete schemata of

relations. In this sense, the concepts of a metalevel and metafact are similar to that of the

complete schemata, and like the table versions, level and fact versions are implemented as views.

In (Grandi, 2002), the author proposes a logical data model to store the multiple database

versions in relational databases. Contrary to TSQL2, the data model is based on the idea of a

multi-pool storage approach where each version of a relation is stored as a separate physical

table. In this way, it is possible to render a single entity with different structural details

simultaneously. The information on the schema versions is stored in a catalog consisting of five

tables, which combined provide the representation of the schema and associated data to each

version. A query language, denotes MSQL, is defined on top of the model, allowing accessing in

the same query the schema elements and subsequently the data belonging to multiple schema

versions. The language extends SQL to contextualize the names and data references to schema

versions.

Golfarelli et al. (Golfarelli, Lechtenbörger, Rizzi, & Vossen, 2006; Rizzi & Golfarelli, 2007)

present an approach to managing the content and schema changes and performing so-called

cross-version queries. Such queries require data stored in different schema versions. Each DW

schema is represented as a directed graph in which nodes represent the dimension attributes or

measures, and edges represent the simple, functional dependencies of a canonical cover. The fact

node has outgoing edges only. It is connected to all other nodes, representing the dimension

attributes and measures. Four graph-based SMOs are used to carry out content and schema

changes: add/delete an attribute and add/delete arc.

Furthermore, a so-called augmented schema is used to handle the issue of missing data between

consecutive DW versions. When a user creates a new schema version, an augmented schema is

also generated: It is the most generic schema containing all the elements from both the new and

the old versions. Moreover, in the augmented schema, the user can estimate the value of newly

added measures from the existing ones, disaggregate the measure values according to some

business rule, manually provide the value of attributes or measures, and check whether the

current instances hold for an added relationship. Augmented schema allows the transformation of

data between schema versions; therefore, cross-versions queries can be answered.

The model of F. Ravat et al. (Ravat, Teste, & Zurfluh, 2006) consists of a collection of the star

schema. Each star schema captures a snapshot of a fact version and multiple dimension versions

at their extraction point. The extraction time represents when a dimension member or fact is

loaded into the DW and enables the temporally consistent representation of data. It is captured by

using a pair of timestamps with dimension members and facts. A set of mapping functions is

used to map data from the DW to each star schema.

The COMET (Eder, Koncilia, & Morzy, 2006; Eder, Koncilia, & Kogler, 2002) model associates

a period with dimension members, hierarchical relationships, and the schema definitions to

maintain the content and schema history. The model allows accurate aggregation (called

proportional aggregation) even if an aggregation relationship's cardinality is m-m. It also

includes the so-called transformation functions to link the transition between the two following

states of dimension members within a single schema version or multiple schema versions.

Furthermore, it defines constraints to preserve the data and schema consistency within and across

various versions.

In (Wrembel & Bebel, 2005; Wrembel & Morzy, 2006; Wrembel, 2009), the authors propose a

MVDW based on the branched versioning model and defined 15 elementary schema changes and

7 instance change operators. A so-called schema derivation transaction is performed to derive the

new schema from an existing one. The transaction ensures that the schema derivation step is

atomic and creates a consistent and persistent schema. To store the versioning information and to

support the cross-version queries, a metamodel is proposed. The proposed MVDW creates a new

DW version even in case of content changes. Since the content changes are more frequent than

schema changes, this approach may significantly increase the number of versions and the efforts

required to maintain the data warehouse. To avoid this problem, the authors suggest grouping

multiple changes as a single transaction and execute together to obtain a new version.

The DW evolution framework of Solodovnika et al. (Solodovnikova, 2008; Solodovnikova,

Niedrite, & Kozmina, 2015) consists of two modules: the user module, which includes the user

reports and queries, and the development module, which consists of metadata and ETL

processes. The authors extended the common warehouse metamodel to store the information at

the logical and physical levels. The logical metadata holds the information about the versions at a

logical level, such as which dimensions, facts etc., are included in a version and its validity. The

physical metadata describes the mapping between the MD schema and the relational database

objects, i.e., tables, columns etc.

TOLAP-QL (Vaisman, Izquierdo, & Ktenas, 2008) is an SQL-like language that allows

metaqueries. A metaquery is posed against the evolving schema instead of the data. For example,

in a dimension hierarchy where members of a child level are regrouped to a different parent over

time, the query "how were the members organized at a given time t" is a metaquery. For query

performance, the language has a STORE clause to cache the intermediate result of a query used

by subsequent queries. For query optimization, three mechanisms are used, namely join

optimization, query pruning, and view materialization. The first one avoids joining the fact with

the dimension if the SELECT clause levels are the base level of the dimensions. The second one

ignores a fact version if its validity is outside the time implied in the query or the dimension level

mentioned in the query did not exist during the lifespan of the version. The third one serves as a

cache that stores pre-computed aggregates, thus avoid going back to the original relations and

computing the aggregates.

CONCLUSIONS AND FUTURE WORK

Data warehouses (DW) change in their content and schema due to routine business processes, or

adoption of new technologies, to name a few. Such changes must be incorporated into a DW for

accurate decision-making. Temporal DWs allow managing content changes but cannot deal with

the changes in the schema. Multiversion data warehouses (MVDWs) allow managing both

content and schema changes; however, their implementation is complicated. This paper extended

a multidimensional model (MD) to allow managing schema changes. In this way, the temporal

MD model can handle the content changes, and the MV MD model can be used to address the

schema changes.

Moreover, to derive various schema versions, the semantics of schema modification operators

are given. These operators create the new schema elements and modify the existing data to

allow the semantically correct results of OLAP operations. Since each DW version acts as a MD

data structure, the traditional OLAP operations can be performed on it. Finally, the translation of

the model to a relational representation along with an SQL-based implementation is given.

As a result of changes in the data storage model, the ETL populating the model must also evolve.

As future work, the SMOs can be extended to incorporate the ETL evolution. When temporal

and MV extension and used together, schema changes may occur, such as making a non-

temporal element a temporal one. The semantics of such changes also needs to be defined.

References

Ahmed, W., Zimányi, E., Vaisman, A., & Wrembel, R. (2020). Temporal multidimensional

model and OLAP operators. International Journal of Data Warehousing and Mining, 16,

51-67.

Armbrust, M., Das, T., Paranjpye, S., Xin, R., Zhu, S., Ghodsi, A., . . . Zaharia, M. (2020). Delta

Lake: High-Performance ACID Table Storage over Cloud Object Stores. VLDB Endow.,

13, 3411-3424.

Blaschka, M. (2001). FIESTA: A Framework for Schema Evolution in Multidimensional

Databases (Abstract). Datenbank Rundbrief, 27, 65-66.

Blaschka, M., Sapia, C., & Höfling, G. (1999, 8). On Schema Evolution in Multidimensional

Databases. Int. Conf. on Data Warehousing and Knowledge Discovery, DaWaK (pp. 153-

164). Florence: Springer.

Bonifati, A., Furniss, P., Green, A., Harmer, R., Oshurko, E., & Voigt, H. (2019). Schema

validation and evolution for graph databases. Int. Conf. on Conceptual Modeling, (pp.

448-456).

Curino, C. A., & Zaniolo, C. (2010). Update rewriting and integrity constraint maintenance in a

schema evolution support system: PRISM. Proc. of the VLDB Endowment, 4, 117-128.

Curino, C. A., Moon, H. J., & Zaniolo, C. (2008). Graceful database schema evolution: the

PRISM workbench. Proc. of the VLDB Endowment, 1, 761-772.

Curino, C. A., Moon, H. J., Ham, M., & Zaniolo, C. (2009). The PRISM Workwench: Database

Schema Evolution without Tears. Int. Conf. on Data Engineering, ICDE (pp. 1523-1526).

Shanghai: IEEE.

Eder, J., Koncilia, C., & Kogler, H. (2002). Temporal Data Warehousing: Business Cases and

Solutions. Int. Conf. on Enterprise Information Systems, ICEIS, 1, pp. 81-88. Ciudad.

Eder, J., Koncilia, C., & Morzy, T. (2006). The COMET Metamodel for Temporal Data

Warehouses. Int. Conf. on Advanced Information Systems Engineering, CAiSE. 2348, pp.

83-99. Toronto: Springer.

Golfarelli, M., & Rizzi, S. (2009). A survey on temporal data warehousing. International Journal

of Data Warehousing, 5.

Golfarelli, M., Lechtenbörger, J., Rizzi, S., & Vossen, G. (2006). Schema versioning in data

warehouses: Enabling cross-version querying via schema augmentation. Data &

Knowledge Engineering, 59, 435-459.

Goller, M., & Berger, S. (2015). Handling measurement function changes with Slowly Changing

Measures. Information Systems, 53, 107-123.

Grandi, F. (2002). A Relational Multi-Schema Data Model and Query Language for Full Support

of Schema Versioning. Decimo Convegno Nazionale su Sistemi Evoluti per Basi di Dati,

SEBD, (pp. 323-336). Portoferraio, Isola d'Elba.

Herrmann, K., Voigt, H., Pedersen, T. B., & Lehner, W. (2018). Multi-schema-version data

management: data independence in the twenty-first century. The VLDB Journal, 27, 547-

571.

Hurtado, C. A., Mendelzon, A. O., & Vaisman, A. A. (1999). Maintaining Data Cubes under

Dimension Updates. Int. Conf. on Data Engineering, ICDE (pp. 346-355). Sydney: IEEE.

Hurtado, C. A., Mendelzon, A. O., & Vaisman, A. A. (1999). Updating OLAP dimensions. Int.

Workshop on Data Warehousing and OLAP, DOLAP (pp. 60-66). Kansas City: ACM.

Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., & Mayorova, D. (2014). A requirement-

driven approach to the design and evolution of data warehouses. Information Systems, 44,

94-119.

Kaas, C., Pedersen, T. B., & Rasmussen, B. (2004). Schema evolution for stars and snowflakes.

Int. Conf. on Enterprise Information Systems, ICEIS, (pp. 425-433). Porto.

Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to

Dimensional Modeling (3rd ed.). John Wiley & Sons.

Malinowski, E., & Zimányi, E. (2008). A conceptual model for temporal data warehouses and its

transformation to the ER and the object-relational models. Data & Knowledge

Engineering, 64, 101-133.

Merlo, I., Bertino, E., Ferrari, E., & Guerrini, G. (1999). A temporal object-oriented data model

with multiple granularities. Int. Workshop on Temporal Representation and Reasoning.

TIME-99, (pp. 73-81).

Moon, H. J., Curino, C. A., Deutsch, A., Hou, C.-Y., & Zaniolo, C. (2008). Managing and

querying transaction-time databases under schema evolution. Proc. of the VLDB

Endowment, 1, 882-895.

Nargesian, F., Zhu, E., J. Miller, R., Pu, K., & Patricia C. , A. (2019). Data Lake Management:

Challenges and Opportunities. VLDB Endow., 1986-1989.

Qiu, D., Li, B., & Su, Z. (2013). An empirical analysis of the co-evolution of schema and code in

database applications. Proc. of the Joint Meeting on Foundations of Software

Engineering and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE), (pp. 125-135).

Ravat, F., Teste, O., & Zurfluh, G. (2006). A multiversion-based multidimensional model. Int.

Conf. on Data Warehousing and Knowledge Discovery, DaWaK (pp. 65-74). Krakow:

Springer.

Rizzi, S., & Golfarelli, M. (2007). X-time: Schema versioning and cross-version querying in data

warehouses. Int. Conf. on Data Engineering, ICDE (pp. 1471-1472). Istanbul: IEEE.

Roddick, J. F. (1995). A survey of schema versioning issues for database systems. Information &

Software Technology, 37, 383-393.

Roddick, J. F., Craske, N. G., & Richards, T. J. (1993). A taxonomy for schema versioning based

on the relational and entity relationship models. Int. Conf. on Entity-Relationship

Approach (pp. 137-148). Springer.

Rundensteiner, E. A., Koeller, A., & Zhang, X. (2000). Maintaining data warehouses over

changing information sources. Communications of the ACM, 43, 57-62.

Sjøberg, D. (1993). Quantifying schema evolution. Information and Software Technology, 35,

35-44.

Snodgrass, R. T. (Ed.). (1995). The TSQL2 Temporal Query Language. Kluwer Academic

Publishers.

Solodovnikova, D. (2008, 8). Metadata to Support Data Warehouse Evolution. Int. Conf. on

Information Systems Development, ISD (pp. 627-635). Paphos: Springer.

Solodovnikova, D., Niedrite, L., & Kozmina, N. (2015). Handling Evolving Data Warehouse

Requirements. Proc. of the ADBIS 2015 Short Papers and Workshops (pp. 334-345).

Poitiers: Springer.

Vaisman, A. A., Izquierdo, A., & Ktenas, M. (2008). A web-based architecture for temporal

olap. Int. Journal of Web Engineering and Technology, 4, 465-494.

Vaisman, A., & Zimányi, E. (2014). Data Warehouse Systems: Design and Implementation.

Springer.

Vassiliadis, P., Zarras, A. V., & Skoulis, I. (2017). Gravitating to rigidity: Patterns of schema

evolution–and its absence–in the lives of tables. Information Systems, 24-46.

Wrembel, R. (2009). A survey of managing the evolution of data warehouses. International

Journal of Data Warehousing and Mining, 5, 24.

Wrembel, R., & Bebel, B. (2005). Metadata management in a multiversion data warehouse.

Proc. of the On the Move Confederated International Conferences, OTM (pp. 1347-

1364). Agia: Springer.

Wrembel, R., & Morzy, T. (2006). Managing And Querying Versions Of Multiversion Data

Warehouse. Int. Conf. on Extending Database Technology, EDBT (pp. 1121-1124).

Munich: Springer.

