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Abstract 

Background: Time-varying dynamics is one of the main issues for achieving safe blood glucose control in type I diabetes 

mellitus (TI DM) patients. In addition, the typical disturbances considered for controller design are meals, which increase the 

glucose level, and physical activity (PA), which increases the subject's sensitivity to insulin. In previous works the authors have 

applied a linear parameter-varying (LPV) control technique to manage unannounced meals. 

Methods: A switched LPV controller that switches between 3 LPV controllers, each with a different level of aggressiveness, 

is designed to further cope with both unannounced meals and postprandial PA. Thus, the proposed control strategy has a 

"standard" mode, an "aggressive" mode, and a "conservative" mode. The "standard" mode is designed to be applied most 

of the time, while the "aggressive" mode is designed to deal only with hyperglycemia situations. On the other hand, the 

"conservative" mode is focused on postprandial PA control. 

Results: An ad hoc simulator has been developed to test the proposed controller. This simulator is based on the distribution 

version of the UVA/Padova model and includes the effect of PA based on Schiavon. 1 The test results obtained when using 

this simulator indicate that the proposed control law substantially reduces the risk of hypoglycemia with the conservative 

strategy, while the risk of hyperglycemia is scarcely affected. 

Conclusions: lt is demonstrated that the announcement, or anticipation, of exercise is indispensable for letting a mono­

hormonal artificial pancreas deal with the consequences of postprandial PA. In view of this the proposed controller allows 

switching into a conservative mode when notified of PA by the user. 
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There has been an intense research activity in the last decades 

to produce an artificial pancreas (AP) that may help type 1 

diabetes mellitus (T1DM) patients. Automatic feedback con­

trol ofblood glucose levels has been an active research topic 

since the 1970s,2 and with the development ofthe continuous 

glucose monitoring (CGM),3 it has gained momentum only 

in recent years.4-7 In addition, very recently it has been tested 

in an outpatient setting.8-
12 An important issue to be consid­

ered here is the possibility that an AP could help patients in 

their everyday life by reducing the need for self-management 

strategies. 

The typical disturbances considered for controller design 

are meals, which increase the glucose level, and physical 

activity (PA), which increases the subject's sensitivity to insu­

lin. Recently, models of PA have been developed in Schiavon, 1 

Breton, 13 Dalla Man et al, 14 Jacobs et al, 15 Ben Brahim et al, 16 

Schiavon et al, 17 and references therein. These models could 

be included in a simulator to test the performance of different 
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control algorithms under PA. The general idea is to produce 
similar results with this disturbance in the glucose-insulin reg­
ulation, that is, eliminate the need of PA anticipation. In this 
respect, an automatic insulin adjustment via continuous sub­
cutaneous insulin infusion (CSII) at the start of PA seems to be 
a reasonable decision. Therefore, several works focused on 
detecting PA have been presented.18-20 Furthermore, multiple
clinical studies have shown that the chances of experiencing 
hypoglycemia decrease when adjusting the insulin injection at 
the beginning of PA.21-23 However, it is worth mentioning that
none of them refer to postprandial PA, which is the main topic 
of this article. PA approximately 2 hours after a meal seems to 
be a worst case situation, because even if the insulin infusion 
is reduced, or the pump is switched off, there is still high insu­
lin on board (IOB), which under PA (that increases insulin sen­
sitivity) will increase the risk of hypoglycemia. In Turksoy 
et al,24 an adaptive control with unannounced meals and exer­
cise is presented. The PA in sorne of those cases could be con­
sidered as postprandial, but either the PA was initiated too 
soon or far after the meal, or the patient had low IOB during 
exercise, or he/she ate after completion of PA. In those situa­
tions where the PA was performed approximately 2 hours after 
a meal and with an insulin bolus injected at the mealtime, the 
patient had to be rescued with a snack. As stated in Riddell 
et al,25 one ofthe factors affecting blood glucose fluctuations
during PA are the amount of insulin and food in the body at the 
time of the activity. 

Previous work by the authors using time-varying control­
lers, that have been tested in silico, were presented in 
Colmegna et al.26 In addition, in Colmegna and Sánchez­
Peña,27 similar results were achieved in a linear parameter­
varying (LPV) controller framework. An extension of this 
latter proposal is an approach that switches between a selec­
tion of multiple LPV controllers that have been designed for 
different objectives. In Colmegna et al,28 the authors have
applied that strategy to regulate the blood glucose level in 
response to unannounced meals by switching between 2 LPV 
controllers. One controller is dedicated to dealing with large 
and persistent hyperglycemic excursions as in the postpran­
dial stage, and the second controller is responsible for glu­
cose control at all other times. The switch is triggered via an 
estimator that detects persistent high glucose values. This is 
similar to the proposal in Gondhalekar et al. 29

In this article, the strategy is to extend these results to 
patients performing late postprandial PA by generating a 
third LPV controller that is more conservative. Here, late 
postprandial is defined as approximately 2 hours after a 
meal. The possibility of estimating the appearance of PA is 
also explored, so that exercise anticipation is unnecessary. 
Unforturtately, as is demonstrated later, this is not possible, 
at least in mono-hormonal (insulin) control and under post­
prandial PA. PA affects glucose differently and may induce 
either hyperglycemia or hypoglycemia. The type of PA is a 
key (aerobic or anaerobic) and the amount ofavailable insu­
lin and its delayed peak of action is the other major 

contribution. Most of the time after the meal the patient has 
a larger amount of "free" insulin that allows glucose uptake 
by the muscles. No matter how fast the estimator detects the 
presence of PA, a hypoglycemia episode is likely to occur in 
mono-hormonal control. This happens when the exercise is 
initiated in the (late) postprandial period and the controller 
reacts according to the estimator output, or, in an open-loop 
setting, with no basal attenuation or pump suspension 
approximately 1 hour prior to the PA.17·30 It is worth noting
that hypoglycemia episodes have been detected even in 
healthy subjects during postprandial exercise.31 Hence,
(late) postprandial PA needs to be anticipated to avoid PA 
induced hypoglycemia. Despite this limitation, the notion of 
switched LPV control can still be used, but with a controller 
purposefully designed for such a situation and triggered by 
the user. 

The article is organized as follows. The next section pres­
ents the methods based on the PA model, details the inherent 
problems which appear in postprandial PA, and also includes 
the controller design based on a previous work by the authors. 
Numerical simulations with the new switched LPV control­
ler are provided in the third section. A discussion of these 
results and future research directions are presented in the 
fourth section, and conclusions are drawn in the fifth 
section. 

Methods 

PA Model 

Although there are several works that aim toward providing 
better understanding of the effect of exercise on glucose 
physiology, modeling PA is still an open problem. Glucose 
excursions during and after exercise do not only depend on 
the type of PA, but also on many other factors such as dura­
tion of diabetes, gender and fitness level. In Breton13 and 
Dalla Man et al, 14 a mathematical model that links heart rate
(HR) with PA was developed. However, in van Bon et al,30 

no correlation could be demonstrated between the increase in 
HR and the decrease in glucose concentrations during 
moderate-intensity exercise. 

A well-known effect related to PA is the increase in insu­
lin sensitivity. In Schiavon et al,31 that effect was quantified
during moderate exercise in 4 periods of 15 minutes each 
separated by a 5-minute rest, in the postprandial state. In this 
work, that result is included in the FDA-accepted metabolic 
simulator as reported in Schiavon 1 and Schiavon et al. 17
Therefore, the model parameter V mx that represents the insu­
lin sensitivity is modified as follows: 

vmx (t)= at+b iftex +75min<t<tex 
+240min {

avmxr iftex �t�tex +75min 

where 

V
= 

otherwise 
(1)
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Figure 1. Postprandial blood glucose excursion obtained with the switched-LPV strategy with (blue squares) and without (green circles) 
unannounced PA. 

(1-a)Vmxr a=�-�-
165 (2) 

(3) 

with a= 3 .29, V mxr the subject's sensitivity to insulin at 
rest, and tex the exercise start time. 

As indicated in Schiavon et al17 and Schiavon et al,3 1 this 
method has sorne limitations. First, it assumes a nonphysiologi­
cal step increase in V mx at tex . Furthermore, it only describes 
the effect of exercise on insulin-dependent glucose utilization, 
although insulin-independent effects are also known to be trig­
gered due to the PA. Despite the aforementioned drawbacks, it 
is worth noting that the results presented in Schiavon et aI3 1 

were obtained using the triple-tracer technique for the first time 
to measure the PA effect on glucose metabolism in the post­
prandial period. In addition, although with this modeling 
framework we can only sirnulate moderate PA in the (late) 
postprandial period, we understand that, as mentioned in the 
Introduction, this is one of the most difficult control situations 
due to the large increase in the subject's sensitivity to insulin at 
the time he/she still has high IOB. Finally, this physiological 
effect can be incorporated into the FDA-accepted UVNPadova 
T1DM sirnulator in a straightforward way. 1

•
17 

Control Prob/ems in Postprandia/ PA 

As stated in Schiavon et al, 17 there are 2 irnportant questions 
regarding the inclusion of postprandial PA in closed-loop 
control. Here, we add a third one. 

• Is it necessary to anticípate the incoming PA to avoid
postprandial hypoglycernia?

• In case the answer is yes, which is the best closed­
loop strategy?

• Can bihormonal control help in this regard and avoid
the necessity of anticipating PA?

In previous works in the LPV framework, we have focused 
on unannounced meal perturbations. This was handled by 
means of an estimator that detects persistent high glucose 
values, and by switching to a more aggressive LPV control­
ler, which was previously designed. Specifically, the control­
ler switches to a hyperglycemia operating mode when high 
and rising glucose values are detected, for example, after a 
meal. The LPV controller in this region is more aggressive 
because it is focused on reducing the hyperglycemia peak. 
However, ifthe patient is involved in PA in the postprandial 
state, hypoglycemia, which occurs when the blood glucose 
level drops below 70 mg/dl, could not be prevented, as is 
depicted in Figure 1. 

The same idea applied to unannounced meals could be 
attempted with PA. The goal would be to have a similar 
"exercise estirnator" that could anticípate this perturbation, 
and thereby, avoid the user's involvement, for example, 
unannounced PA . However, it can be shown by means of in 
silico simulations, that even ifwe have a perfect PA estima­
tor, the postprandial hypoglycemia may not be avoided. In 
fact, in Figure 2, it is shown that the strategy of cutting the 
total insulin infusion to zero at the instant when PA is initi­
ated is still futile, at least with a mono-hormonal control 
strategy. The latter was also detected experimentally in van 
Bon et al. 30 Basically, the problem is that the amount of insu­
lin injected at meal times could be excessive under the effect 
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Figure 2. Blood glucose response (black squares) obtained with the autonomous switched-LPV strategy when insulin administration 
(blue circles) is interrupted during PA. 

of PA. Unfortunately, considering that PA can be detected, at 
the earliest, at the time it is initiated, it is impossible to make 
a decision at meal times which involves postprandial PA, 
before PA has been detected. In addition, only the patient can 
anticípate PA before it happens. 

Once we agree with the fact that PA anticipation is neces­
sary, the best strategy can rely on another LPV controller that 
may be designed for PA situations, that is, a third, more conser­
vative controller, in the switched-LPV control approach. The 
switching signal in this case would be triggered by the patient 
30 minutes before the meal, because there is no way to antici­
pate this information in a real situation by CGM feedback. The 
conservative region will be active during 5 hours for it to 
remain active during almost the whole postprandial period, and 
thereafter, the other LPV controllers will automatically take 
over the insulin delivery. Similar postprandial periods have 
been defined in Colmegna et al,26 Colmegna et al,28 Monnier 
and Colette,32 Nimri et al,33 and Breton et al.34 The comparison 
between this new, more conservative approach, that will be 
detailed in the next section, and the previous presented in
Colmegna et al28 is depicted in Figure 3. As shown in that fig­
ure, even without switching to the most aggressive controller at 
mealtime, the postprandial hypoglycemia due to PA cannot be 
avoided. 

Controller Design 

The following is a very brief surnmary of work presented in 
Colmegna et al. 28 In that work, for each in silico Adult # j of 
the UVA/Padova simulator, 2 LPV controllers K;,j with 
i E { 1, 2} were synthesized. Controller K,,j was designed to 
control most of the time, while K2,j was applied only when 
high and rising glucose values were detected, for example, 
after a meal. 

The model structure presented in van Heusden et al,35 and 
slightly adapted in Colmegna et al,26 was considered for 

design purposes. The main advantage of such a model struc­
ture is that it is a simple third-order model with a personal­
ized gain based solely on a priori clinical information: total 
daily insulin (TDI), carbohydrate ratio (CR), and body 
weight (BW). Therefore, for each Adult # j, an individual­
ized transfer function G;,¡ ( s) , from the insulin delivery 
input (pmol/min) to the glucose concentration output (mg/ 
dl), can be obtained. Note that G;,¡ ( s) depends on both 
indexes: i and j . This is because the gain of the transfer 
function G2,¡ ( s) is intentionally smaller than the gain of 
G1,¡ ( s) to obtain a more aggressive control law when large 
and persistent hyperglycemic excursions are detected. 

In this work, a third LPV controller '/G,,j is included to 
manage postprandial PA. To that end, the gain of the corre­
sponding transfer function G3,J ( s) is purposefully defined
to be greater than the gain of G,,1 ( s) . In this way, G3,J ( s)
is associated with a more conservative model, and therefore, 
with a less aggressive control law. 

The augmented continuous-time model for controller 
design is depicted in Figure 4, where: 

P;,
1 
(s) = [� -G;� (s )] 

1 -G .(s) l,J 

(4) 

r and e are, respectively, the reference and error signals, u 
is the control action, and Wu,i and W

p,i ( s) are the design 
weights. As shown in the same figure, 2 parameters have 
been included in each augmented model to adapt the control­
ler during the closed-loop implementation. The time-:xarying 
parameters are 01 (t) = llOmg/dl and 02 (t) = iP� 

(t) . The 
g(t) lpb 

first parameter is real-time measurable and depends on the 
glucose level g(t) �asured � the CGM. The second
parameter depends on L ipc ( t), ipb J , which are the estimated 
current and basal plasma insulin levels, respectively. The 
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Figure 3. Postprandial blood glucose excursion when the control law switches to the most aggressive controller at meal time (blue 
squares), when the control law does not switch to the most aggressive controller at meal time (orange triangles), and when the control 
law switches to the conservative controller 30 minutes before the meal (green circles). 

r 

p. ·(s) i,¡ 

u 

Figure 4. Augmented model for controller design. 

estimation is performed through the subcutaneous insulin 
model proposed in Dalla Man et al, 36 considering its mean 
population values. In the case of ipe ( t) , the input to the 
model is the current injected insulin, and in the case of ipb, 
the basal insulin dosage. Note that ipb can be obtained off­
line, before the simulation. 

The performance and actuator weights Wp,; ( s) and W,,,; 
are designed such that the open-loop model matrices depend 
affinely on the parameters e k ( t) , k = l, 2 . Also, the param­
eter regions are convex polytopes with a tlnite number v of 
vertices, that are known. Hence, the optimization problem 

u 

e 

e 

01 (t),02 (t) 

Wu,i 
Z¡ 

wp,i(s) 
Zz 

related to the LPV controller synthesis can be stated in terms 
of a finite number of linear matrix inequalities (LMis ). 
Specifically, for each LPV controller, the problem is solved 
in terms of 2v + 1 LMis, that is, a common single quadratic 
Lyapunov function for each set of v = 4 vertices. Note that 
the vertex controllers can be synthesized off-line. 

During the implementation phase, the LPV controllers for 
i = l,2,3 can be computed as follows: 

V 

,c,Ae(t)]= ¿111(t)K;,¡(ek,1) (5) 
l=I 
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Figure S. Average closed-loop responses for ali the in silico adults of the distribution version of the UV A/Padova simulator with (green 
circles) and without (blue squares) PA anticipation. The lines with markers are the mean values, and the mean ±1 STD values are 
represented by vertical bars, every I O minutes. The filled yellow and green regions represent the 70-180 mg/dl and 80-140 mg/dl ranges, 
respectively. 

V V 

e(t) = ¿ri1 (t )ek ,t and �)11 (t) = 1, 
l=l l=l 

(6) 

where ll1 ( t) E [ O, 1 ]v t E[ O, 00) are the polytopic coordinates 
ofthe measured parameter e(t), and ek,z are the vertices of 
the parameter regions. 

The LPV "fast poles" problem can be solved by defining 
a convenient LMI region to keep the poles of each "frozen" 
linear time invariant closed-loop system (holding the param­
eter fixed) in a prescribed region of the complex plane. 37 

These pole region is selected at least 1 O times slower than the 
controller sampling time T, = 1 O minutes. 

As previously mentioned, � . automatically takes over 
the insulin delivery when high ari'd rising glucose values are 
detected. In that way, a hyperglycemia detection algorithm 
has been implemented based on g ( t) and an estimation of 
its rate of change, which is obtained by a causal fourth-order 
Savitzky-Golay filter.38

•
39 On the other hand, �.j is applied 

manually by user notification. 

Results 

The glucose-insulin model presented in Dalla Man et al40 

was modified to include the effect of PA in the postprandial 
state. All 11 in silico adults ( one is an average patient) of the 
distribution version ofthe UVNPadova metabolic simulator 
are considered for simulations, using CGM as the sensor and 
a generic CSII pump. 

Due to the fact that closed-loop performance of the 
switched-LPV strategy with several unannounced meals has 
already been tested in Colmegna et al, 28 here, simulations are 
exclusively focused on postprandial PA. Therefore, the pro­
tocol has only a duration of 6 hours. It starts at noon with the 
switched-LPV controller closing the loop, and the conserva­
tive LPV controller is triggered manually at 12:30 PM. Then, 
a meal of 65 g carbohydrates is ingested at 1 PM, and thereaf­
ter, a moderate-intensity exercise commences at 3 PM. Finally, 
the controller automatically leaves the conservative mode, 
that is, i = 3, at 5:30 PM and returns to the autonomous mode, 
that is, i = { 1, 2} . The case where PA is not announced is also 
tested for comparison purposes. 

The average time responses obtained with and without 
postprandial PA announcement are depicted in Figure 5. As 
shown in that figure, if exercise is not announced, a large 
insulin spike appears, because the controller triggers into an 
aggressive mode when the meal is detected. In that way, sub­
sequent PA makes postprandial hypoglycemia unavoidable. 
On the other hand, as can be seen from Figure 5, ifthe con­
troller is triggered into the conservative mode 30 minutes 
before the meal, postprandial hypoglycemia does not occur. 

The control variability grid analysis (CVGA) plots41 and 
the average results for announced and unannounced PA are 
presented in Figure 6 and Table 1 , respectively. Both the 
CVGA plots, as well as the average results, are computed 
based on the 5-hour time interval following the start of the 
meal, considering a 95% confidence interval. It is notewor­
thy that although the risk of hypoglycemia is substantially 
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Figure 6. CVGA plots of the closed-loop responses of all the in silico adults of the distribution version of the UV A/Padova simulator 
with (circles) and without (stars) PA anticipation. The CVGA categories represent different levels of glucose control, as follows: 
accurate (A zone), benign deviation into hypo/hyperglycemia (lower/upper B zones), benign control (B zone), overcorrection of hypo/ 
hyperglycemia (upper/lower C zone), failure to manage hypo/hyperglycemia (lower/upper D zone), and erroneous control (E zone).41 

Table 1. Comparison Between the Average Results for AII the 
in Silico Adults of the Distribution Version of the UV A/Padova 
Simulator Obtained With and Without PA Anticipation. 

PA anticipation Yes No 

Postprandial PA Yes No Yes No 

Max BG (mg/dl) 224 224 219 219 

Min BG (mg/dl) 104 107 64 105 

% time in (70 180) mg/dl 68.6 50.4 60.0 65.4 

% time > 300 mg/dl O.O O.O O.O o.o

% time > 180 mg/dl 31.4 49.6 26.1 34.6 

% time < 70 mg/dl o.o o.o 14.3 o.o

% time < 50 mg/dl o.o o.o 8.5 o.o

# < 80 mg/dl o o 6 o 

# < 70 mg/dl o o 5 o 

# < 50 mg/dl o o 5 o 

LBGI o o 4.5 o 

HBGI 5.3 8.6 4.2 5.8 

HBGI, high blood glucose index; LBGI, low blood glucose index. 

reduced with the conservative strategy, the risk of hypergly­

cemia is scarcely affected. In fact, hyperglycernia is slightly 

reduced (HBGI = 5.8 to 5.3) comparing with the case ofstan­

dard autonomous switching from normal ( ¡ = 1 ) mode to 

aggressive ( ¡ = 2 ) mode and no exercise. 

Figure 7 illustrates that reducing the insulin infusion to 

the basal rate before the PA and up to its completion pro­

duces a high risk of hypoglycemia. Furthermore, in that fig­

ure it is shown that even switching off the pump during that 

period of time, hypoglycemia could not be avoided in all 

patients, and, in addition, increase glucose variability. One of 

the reasons is that 30 minutes before the PA the controller 

already injected the insulin "bolus" in response to the meal. 

Hence, even if the insulin infusion is reduced, or the pump is 

switched off, there is still a large amount of free insulin, 

which under PA (that increases insulin sensitivity) will 

increase the risk ofhypoglycemia. This is the reason why, as 

stated above, it is switched to the most conservative LPV 

control region 30 minutes previous to the meal, so that the 

controller is less aggressive in response to the CHO inges­

tion, and as a consequence, when PA begins there is less JOB. 

Finally, in Table 2 outcomes for different meal sizes (and 

therefore different JOB at the start of PA) using the switched 

LPV controller with and without PA anticipation are 

compared. 

Discussion 

Here, the questions posed in Schiavon et al17 regarding the 

inclusion of PA in closed-loop control are analyzed. 

• Is it necessary to anticípate the incoming PA to avoid

postprandial hypoglycemia?
• In case the answer is yes, which is the best closed-

loop strategy?

The answer to the first one is yes, and the solution presented 

here involves a switched LPV controller based on current 

research by the authors described above, with the addition of 

a third more conservative LPV region used in the case of PA. 

Furthermore, a third question, whether a bihormonal con­

trol could allow the patient to not be part of the control loop, 

is also considered. Although this is not yet reliable from the 



300 

250 

� 
},ea 

§ 140 

80 
70 

50 

12 13 15 

nme[h] 

18 
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Table 2. Comparison Between the Average Results for AII the in Silico Adults of the Distribution Version of the UV A/Padova Simulator 
to Different Unannounced Meal Sizes Obtained Using the Switched LPV Controller With and Without PA Anticipation. 

Meal size (gCHO) 55 60 65 70 75 

PA anticipation Yes No Yes No Yes No Yes No Yes No 

IOB at C.x (U) 3.1 3.9 3.2 4.1 3.3 4.3 3.3 4.4 3.4 4.7 

Max BG (mg/dl) 205 201 214 210 224 219 233 228 243 236 

Min BG (mg/dl) 104 69 104 66 104 64 103 61 102 57 

% time in (70 180) mg/dl 76.6 67.7 71.9 62.9 68.6 60.0 66.0 57.1 64.0 53.9 

% time > 300 mg/dl o.o o.o o.o o.o o.o o.o o.o o.o 1.6 1.1 

% time > 180 mg/dl 23.4 19.3 28.1 23.3 31.4 26.1 34.0 28.1 36.0 29.4 

% time < 70 mg/dl o.o 13.0 o.o 13.8 o.o 14.3 o.o 14.8 O.O 16.7 

% time < 50 mg/dl o.o 6.5 O.O 7.5 o.o 8.5 o.o 10.0 o.o 11.7 

# < 80 mg/dl o 6 o 6 o 6 o 7 8 

# < 70 mg/dl o 5 o 5 o 5 o 5 o 7

# < 50 mg/dl o 5 o 5 o 5 o 5 o 5 

LBGI o 3.5 o 4.1 o 4.5 0.1 5.1 0.1 6.4 

HBGI 3.9 3.2 4.6 3.6 5.3 4.2 6.0 4.7 6.8 5.2 

gCHO, grams of carbohydrates; HBGI, high blood glucose index; LBGI, low blood glucose index. 

technological point ofview,42 it is worth exploring and will be

the matter offuture research. In that case, an estimator of PA 

should be included as part of the control so that the patient 

would not have to trigger a signal before a mea!. Such a con­

troller would increase glucagon infusion a short time after the 

PA has been detected to compensate and avoid a hypoglyce­

mia event. In (late) postprandial PA, where the IOB is high 

and glucose is decreasing, injecting glucagon as soon as pos­

sible is recommended to avoid hypoglycemia.42
•
43 In addition,

it is important to emphasize that in nondiabetics there is a rise 

in glucagon and a reduction in insulin release at the onset of 

mild to moderate aerobic PA.
24 

Hence, increasing the <lose of

glucagon as soon as PA is detected is a prudent decision. 

Several articles indicate the plausibility ofbihormonal con­

trol in the presence of PA.4
4-

48 In particular, in the last 2 arti­

cles, patients receive a lunch at approximately 12:30 PM and 

PA starts at 4 PM (at 6 PM they receive another meal). At that 

time ( 4 PM), a peak in the infusion of glucagon can be observed 

(Figure 1 in Russell et al47 and Figures 2 and 3 in El-Khatib 

et al48
). In van Bon et al, 

44 patients receive 40 g of CHO during

lunch, 2 hours later they start moderate PA and 1.5 hours later 

they receive a 60 g CHO mea!. The presence ofthat meal near 

to the PA has an influence, as mentioned in that article. 

Nevertheless, it concludes that subcutaneous glucagon admin­

istration was almost always effective to prevent hypoglycemia 

when glucose was falling rapidly after exercise. 



Conclusions 

A switched-LPV control strategy was presented to deal with 

unannounced meals and (late) postprandial PA. It is clear that 

a more detailed description of PA is necessary to in elude both 

insulin-dependent and insulin-independent effects on glu­

cose absorption during exercise. Toe actual simulator used 

here only describes the worst case scenario, that is, postpran­

dial PA, and includes only the insulin-dependent effects. 

From this work, it was concluded that, at least under 

mono-hormonal (insulin) control, patients may need to 

announce at least 30 minutes before meals the intention to 

perform PA in the (late) postprandial stage so that no hypo­

glycemia is induced. In this case, the user simply "pushes a 

button" and this signal triggers a more conservative LPV 

controller. This is much easier than in mea! announcement

strategies where the insulin bolus needs to be computed 

beforehand based on the meal carbohydrate content. 

Toe switched-LPV technique can be seen as a generaliza­

tion of previous results obtained by the authors. lt can be used 

both in an unannounced (meals) and announced (PA) fashion, 

and allows both automatic and user-defmed switches for other 

possible situations, for example, stress. Toe results are promis­

ing and will be tested against the complete UVA/Padova simu­

lator when this includes a suitable exercise model. 
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