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The inclusion of self-steepening in the linear stability analysis of modulation instability (MI) leads to
a power cutoff above which the MI gain vanishes. Under these conditions, MI in mid-IR waveguides
is shown to give rise to the usual double-sideband spectrum but with Raman-shaped sidelobes. This
results from the energy transfer of a CW laser simultaneously to both Stokes and anti-Stokes bands in
pseudo-parametric fashion. As such, the anti-Stokes gain matches completely the Stokes profile over the
entire gain bandwidth. This remarkable behavior, not expected from an unexcited medium, is shown not
to follow from a conventional four-wave mixing interaction between the pump and the Stokes band. We
believe this observation to be of relevance in the area of Raman-based sensors, which, in several instances,
rely on monitoring small power variations of the anti-Stokes spectral component.

OCIS codes: (190.5650) Raman effect; (190.4380) Nonlinear optics, four-wave mixing

1. INTRODUCTION

Modulation instability (MI) in waveguides has been thoroughly
addressed in the area of fiber optics [1] where it is related to the
formation of optical solitons [2], the generation of coherent light
in the infrared [3], and the enhancement of four-wave mixing
nonlinear interactions in optical communication systems [4],
among others.

Complete models of MI in waveguides, see, e.g., [5, 6] and
references therein, can be used to analyze the interplay between
high-order dispersion, Raman scattering, and self-steepening.
This last effect, arising from a first-order expansion of the waveg-
uide nonlinear-coefficient dependence on frequency, is often
associated with the break-up of ultrashort pulses upon prop-
agation. However, it also has profound consequences in the
case of continuous-wave (CW) pumping of the waveguide, as
its inclusion leads to an optimum pump power that maximizes
the MI gain [7] and a power cutoff [8] above which the MI gain
vanishes, leaving behind only the Raman contribution. Recent
work [9] focusing on emerging phenomena beyond this cutoff
showed that the remnant gain has a Raman, and frequency-
tunable, profile in the Stokes (low-frequency) band. As it is
well known, Raman scattering transfers energy from high to low

frequencies, a principle used in every Raman discrete and/or
distributed amplification scheme [10–12]. As such, the anti-
Stokes (high-frequency) component experiences gain only if the
transmitting medium provides a population of excited phonons
able to transfer energy and create shorter wavelength photons
in the anti-Stokes band. This excited phonon population can be
achieved, for instance, through thermal excitation, and this is the
principle of operation of many distributed Raman temperature
sensors which monitor the power of the Stokes and anti-Stokes
bands, and whose ratio is highly dependent (through a Bose-
Einstein distribution) on the local temperature [13, 14].

In this paper we turn our attention to the behavior of the
anti-Stokes band around the MI power cutoff region and find
that there is also a Raman-shaped gain beyond the cutoff power.
One may suspect that this gain results from the energy transfer,
via conventional four-wave mixing, between the pump and the
Stokes band. However, we demonstrate that this is not the case
and that this process results from a pseudo-parametric interac-
tion, i.e., in the sense that there is no net energy transfer from
the CW pump to the transmission medium, where two pump
photons are annhilated, and two photons are simultaneously
created at the Stokes and anti-Stokes bands, as if in a simple
model of modulation instability in waveguides.
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The remaining of the paper is organized as follows. In Sec-
tion 2 we review the numerical model, based on the generalized
nonlinear Schrödinger equation, and revisit analytical expres-
sions for a full model of scalar modulation instability in waveg-
uides. In Section 3 we discuss the effect of Raman scattering
in both normal and anomalous dispersion regimes, introduce
proper metrics to account for the pseudo-parametric nature of
the processes involved, underscore the need of including self-
steepening in the analysis, and show anti-Stokes gain for the
unexcited transmission medium. Concluding remarks are pre-
sented in Section 4.

2. FULL MODEL OF MODULATION INSTABILITY

Pulse propagation in a lossless nonlinear waveguide is well
described by the generalized nonlinear Schrödinger equation
(GNLSE) [15]
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where A(z, T) is the slowly-varying envelope, z is the spatial co-
ordinate, and T is the time coordinate in a comoving frame at the
group velocity. β̂ and γ̂ are operators related to the dispersion
and nonlinearity, respectively, and are defined by
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βm are the coefficients of the Taylor expansion of the propagation
constant β(ω) around a central frequency ω0. Similarly, γn
are the coefficients of the Taylor expansion of the nonlinear
parameter. It is usually sufficient to consider the expansion up
to the first term. Under this setting, it can be shown that the total
number of photons is conserved if γ1 = γ0/ω0 [16], which is
the usual approximation.

The function R(T) is the Raman response of the medium,
modeled as R(T) = (1− fR) δ(T) + fRhR(T), where fR weights
the contributions of the instantaneous (electronic) and delayed
Raman response [15]. We assumed a typical fR = 0.031 and
Im{h̃R(Ω)} was obtained from our measurements of the Ra-
man spectrum, shown in Fig. 1, of a commercial chalcogenide
As2S3 [17, 18] optical fiber with a core diameter of 180 µm. By
means of the Kramers–Kronig relations we computed the real
part of h̃R(Ω). The inverse Fourier transform of h̃R(Ω) then
provides the Raman response function hR(T) [15, 19]. Note the
peak Raman gain at a frequency deviation of 10.74 THz.

A first-order linear perturbation analysis of the GNLSE re-
veals that, under certain conditions (viz., anomalous disper-
sion), continuous-wave (CW) solutions are unstable. This phe-
nomenon, known as modulation instability (MI) [1, 3, 20–25], is
a parametric process, where two photons from a CW pump are
transferred to both low- and high-frequency bands, one photon
each. As a result, MI gain is observed in both sides of the pump.

A complete analysis of modulation instability reveals the
complex interplay between high-order dispersion, nonlinearity,
and Raman scattering (see, e.g., [5, 6]). For the sake of simplicity,
let us consider the case where βm = 0 for m > 2 and γn = 0 for
n > 1. It can be shown that the MI gain is given by [26]

gMI(Ω) = 2 max{−Im{K1(Ω)},−Im{K2(Ω)}, 0}, (3)
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p|β2|

τ
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Fig. 1. Measured Raman spectrum of a chalcogenide As2S3
optical fiber.

where Ω is the deviation from the pump frequency ω0 and
R̃(Ω) is the Fourier transform of the Raman response R(T). For
convenience, γ1 and the pump power P0 have been normalized
as τ = γ1/γ0 and p = P0/Pc, where

Pc =
|β2|γ0

γ2
1

(5)

is the cutoff power above which the MI gain vanishes, a
phenomenon made apparent by the inclusion of γ1 in the
model [7, 8].

In the absence of Raman scattering (R̃(Ω) = 1), it is easy to
verify that there is no gain when p > 1, that is, when the pump
power P0 exceeds Pc. However, in the presence of Raman scat-
tering (R̃(Ω) 6= 1), MI gain exists for p > 1. The consequences
of this last fact are discussed in the next section.

3. RAMAN AND MODULATION INSTABILITY

Stimulated Raman scattering is a non-parametric process that in-
volves the excitation of molecular vibration modes of the waveg-
uide and, as such, does not conserve the energy of the prop-
agating electromagnetic field. However, it does conserve the
number of photons. Qualitatively speaking, the energy exchange
experienced by a strong continuous-wave laser involves the an-
nihilation of a pump photon and the simultaneous creation of
another photon in the Stokes band. Similarly, a photon in the
anti-Stokes band is annihilated and another photon is created
at the pump frequency. As a result, gain is observed only in
the Stokes band, enabling the application of stimulated Raman
scattering in optical amplification [10].

Figure 2 shows simulation results, obtained from an average
over 50 noise realizations, of a CW pump co-propagating with
additive white Gaussian noise. The signal was propagated an
arbitrary distance in the normal dispersion regime of the waveg-
uide. Dispersion and nonlinear parameters are β2 = 50 ps2/km,
βm = 0 for m > 2, γ0 = 100 W−1km−1, and the pump frequency
is ω0/2π = 59.96 THz. These parameters are consistent with
those of a chalcogenide waveguide with low absorption in the
mid IR [27–32] (the choice of this particular wavelength range
will become clear later on.) Last, the pump power was set to a
moderate P0 = 50 W.

Figure 2(a) shows the spectral density at LR/2, as a func-
tion of frequency deviations from the central frequency ω0.
LR is defined as the inverse of the peak Raman gain, that is,
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Fig. 2. Simulation results of an average over 50 noise realiza-
tions of a CW pump with additive white Gaussian noise: (a)
at a propagated a distance Z = LR/2; (b) at Z = LR. The
measured Raman gain (black dashed line) is also shown for
comparison.

LR =
[
max

(
−2Im

{
R̃(Ω)

})]−1. We observe that noise in the
Stokes band experiences growth through Raman gain. However,
in the anti-Stokes band noise decreases as photons are annihi-
lated and new photons are created at the pump frequency. In
Fig. 2(b), after the signal propagates the remaining distance,
we observe growth in the anti-Stokes band enabled through
four-wave mixing (FWM) between the pump and the Stokes
component [19].

In order to understand the nature of the processes involved,
it is convenient to consider the balance of the number of pho-
tons. As it was mentioned, this is a conserved quantity in the
presence of Raman scattering. However, when dealing with the
large spectral bandwidths associated with Raman processes, the
dependence of the nonlinear parameter on frequency, γ1, must
be taken into account. In this scenario, it can be shown that the
quantity of photons is conserved if, and only if, γ1/γ0 = ω−1

0
[16]. Note that this implies that the influence of self-steepening
increases with decreasing pump frequencies, explaining our
choice of the mid-IR spectral range.

Taking these considerations into account, let us define the
quantity

Ψ(Ω) =
|A(z, Ω)|2
h̄ (Ω + ω0)

, (6)

which is proportional to the number of photons at frequency Ω.
Here, A(z, Ω) stands for the Fourier transform of A(z, T). Fig. 3
shows simulation results for the propagation of a pump and two
seeds located at the Stokes and anti-Stokes frequencies (∓10.74
THz) using the same parameters as in Fig. 2 (both seeds are
assumed to have the same number of photons at z = 0.) Initially,
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Fig. 3. Results for the normal dispersion regime. Simulation
parameters are those of Fig. 2. The Stokes band grows expo-
nentially experiencing Raman gain. The anti-Stokes band is
first depleted through Raman power transfer to the pump.
Further on into the waveguide this band experiences gain
through FWM.

the number of photons at the anti-Stokes frequency decreases as
a consequence of Raman scattering and then begins to increase
(at a distance z ∼ 0.4LR) due to four-wave mixing between the
pump and the Stokes component [33].

Figures 4 shows the evolution of the same quantity in a purely
parametric process such as MI in the absence of Raman. The
normalized pump power is p = 0.8, the fiber dispersion is
anomalous, β2 = −50 ps2/km, and γ0 and ω0 are those of Fig. 2.
The propagated distance is the characteristic MI length, defined
as LMI = (max{gMI})−1. In Fig. 4(a), γ1 = 0 and, given that
the number of photons is not conserved, seeds grow unevenly.
On the contrary, in Fig. 4(b), γ1 = γ0/ω0 and both seeds grow
evenly. It is evidenced that proper account of the photon balance in
the parametric interaction necessitates the inclusion of self-steepening.

Now, if the effect of Raman scattering is included, MI gain
cannot be the result of a purely parametric process. Recall Fig. 3
where the pump is shown to contribute photons only to the
Stokes band, as it is the case with conventional Raman (non-
parametric) amplification, and eventually the anti-Stokes band
is amplified by means of a FWM interaction between the pump
and the Stokes sideband. However, in the anomalous dispersion
region of the waveguide, we can have Raman amplification at
both low- and high-frequencies simultaneously. Indeed, Fig. 5
shows the evolution of both seeds beyond the cutoff power
(p = 1.1) and when Raman scattering is factored in. We observe
that both seeds grow almost simultaneously (cf. Fig. 4(a)), and
the slight difference in the growth rate is due to the actual gain
of the Stokes band due to Raman. We may regard the resulting
behavior as pseudo-parametric, intermediate between that of a
purely parametric process, such as Fig. 4(b), where the gain
evolves simultaneously for low and high frequencies, and that
of the Raman (non-parametric) gain in Fig. 3.

Finally, in Fig. 6 the growth of noise clearly shows the ampli-
fication of both Stokes and anti-Stokes bands for p = 3.0, and
up to a propagated distance of 5LMI. Although not evident from
this figure, it can be shown that the gain spectra mimics the
shape of the Raman response [9], in both Stokes and anti-Stokes
bands.
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Fig. 4. Anomalous dispersion regime, p = 0.8, and no Raman
scattering. (a) γ1 = 0; (b) γ1 = γ0/ω0. Note that the inclusion
of the self-steepening effect is necessary to ensure the proper
photon counting of the parametric interaction.

4. CONCLUSIONS

In this work we showed that, beyond the cutoff power,
modulation instability in mid-IR waveguides gives rise to a
double-sideband spectrum but with Raman-shaped sidelobes.
This results from the energy transfer of a CW pump simultane-
ously to both Stokes and anti-Stokes bands in pseudo-parametric
fashion. Furthermore, by explaining the need to include the
effect of self-steepening in the model, i.e., the dependence of the
waveguide nonlinear parameter in frequency, and introducing
proper photon-counting metrics, we demonstrated that the gain
in the anti-Stokes band does not result from a four-wave mixing
interaction between the pump and the Stokes component
and, as such, is readily available from the very beginning
of the process. We believe this unexpected behavior in an
unexcited transmission medium may find applications, for
instance, in the area of Raman-based distributed temperature
sensors by providing gain to the anti-Stokes (measured) spectral
component, and thus enhancing their sensitivity.

Acknowledgment: We gratefully acknowledge P. Soubelet
for measuring the Raman spectrum of the chalcogenide fiber.

REFERENCES

1. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational
instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).

2. M. Nakazawa, K. Suzuki, H. Kubota, and H. A. Haus, “High-order
solitons and the modulational instability,” Phys. Rev. A 39, 5768–5776
(1989).

0 0.2 0.4 0.6 0.8 1

Z/L
MI

N
o
rm

a
liz

e
d
 
Ψ

(Ω
)

(1
0
 d

B
/d

iv
.)

Stokes

anti-Stokes

Fig. 5. Anomalous dispersion regime with p = 1.1, γ1 =
γ0/ω0 and Raman scattering. Observe the simultaneous
growth of both Stokes and anti-Stokes bands, proving that
gain in the latter is available right from the start and not as
a result of FWM interactions ocurring upon propagation
through the waveguide.

-40 -30 -20 -10 0 10 20 30 40

Frequency [THz]

S
p
e
c
tr

a
l 
d
e
n
s
it
y
 [
d
B

/T
H

z
]

(5
0
 d

B
/d

iv
.)

Z = 3LMI

Z = 0

Z = 2LMI

Z = LMI

Z = 4LMI

Z = 5LMI

Fig. 6. Noise growth on the Stokes and anti-Stokes bands be-
yond the cutoff power (p = 3.0), and for different propagated
distances. Raman peaks at the Stokes and anti-Stokes bands at
a measured frequency deviation of ∓10.74 THz are also shown
(black dotted lines).

3. A. Hasegawa and W. Brinkman, “Tunable coherent IR and FIR sources
utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–
697 (1980).

4. D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. Fragnito,
“Modulation instability induced resonant four-wave mixing in WDM
systems,” IEEE Photonics Technol. Lett. 11, 379–381 (1999).

5. P. Béjot, B. Kibler, E. Hertz, B. Lavorel, and O. Faucher, “General
approach to spatiotemporal modulational instability processes,” Phys.
Rev. A 83, 013830 (2011).

6. J. Bonetti, S. M. Hernandez, P. I. Fierens, and D. F. Grosz, “Analytical
study of coherence in seeded modulation instability,” Phys. Rev. A 94,
033826 (2016).

7. P. K. Shukla and J. J. Rasmussen, “Modulational instability of short
pulses in long optical fibers,” Opt. Lett. 11, 171–173 (1986).

8. C. D. Angelis, G. Nalesso, and M. Santagiustina, “Role of nonlinear
dispersion in the dynamics of induced modulational instability in kerr
media,” J. Opt. Soc. Am. B 13, 848–855 (1996).

9. A. D. Sánchez, S. M. Hernandez, J. Bonetti, P. I. Fierens, and D. F.
Grosz, “Tunable raman gain in mid-ir waveguides,” J. Opt. Soc. Am. B
35, 95–99 (2018).

10. M. Ikeda, “Stimulated raman amplification characteristics in long span
single-mode silica fibers,” Opt. Commun. 39, 148 – 152 (1981).

11. D. F. Grosz, A. Agarwal, S. Banerjee, D. Maywar, and A. Kung, “All-



Research Article Journal of the Optical Society of America B 5

raman ultralong-haul single-wideband dwdm transmission systems
with oadm capability,” J. lightwave technology 22, 423–432 (2004).

12. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. se-
lected topics Quantum Electron. 8, 548–559 (2002).

13. G. Bolognini and A. Hartog, “Raman-based fibre sensors: Trends and
applications,” Opt. Fiber Technol. 19, 678 – 688 (2013). Optical Fiber
Sensors.

14. M. Wang, H. Wu, M. Tang, Z. Zhao, Y. Dang, C. Zhao, R. Liao, W. Chen,
S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode fiber based
raman distributed temperature sensing,” Opt. Express 25, 4907–4916
(2017).

15. G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Academic
Press, 2012), 5th ed.

16. K. Blow and D. Wood, “Theoretical description of transient stimulated
Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25,
2665–2673 (1989).

17. P. Wang, G. Brambilla, M. Ding, X. Zhang, Y. Semenova, Q. Wu, and
G. Farrell, “An sms fiber structure based on chalcogenide multimode
fiber,” in Nonlinear Optics and Applications VI, , vol. 8434 (International
Society for Optics and Photonics, 2012), p. 84340N.

18. P. Wang, G. S. Murugan, G. Brambilla, M. Ding, Y. Semenova, Q. Wu,
and G. Farrell, “Chalcogenide microsphere fabricated from fiber tapers
using contact with a high-temperature ceramic surface,” IEEE Photon.
Technol. Lett 24, 1103–1105 (2012).

19. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
20. A. Demircan and U. Bandelow, “Supercontinuum generation by the

modulation instability,” Opt. Commun. 244, 181–185 (2005).
21. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modula-

tion instability, Akhmediev breathers and continuous wave supercontin-
uum generation,” Opt. Express 17, 21497–21508 (2009).

22. D. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,”
Nature 450, 1054–1057 (2007).

23. K. Hammani, C. Finot, B. Kibler, and G. Millot, “Soliton generation
and rogue-wave-like behavior through fourth-order scalar modulation
instability,” Photonics Journal, IEEE 1, 205–212 (2009).

24. N. Akhmediev, J. M. Soto-Crespo, and A. Ankiewicz, “How to excite a
rogue wave,” Phys. Rev. A 80, 043818 (2009).

25. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen,
and O. Bang, “Influence of pump power and modulation instability gain
spectrum on seeded supercontinuum and rogue wave generation,” J.
Opt. Soc. Am. B 29, 2875–2885 (2012).

26. S. M. Hernandez, P. I. Fierens, J. Bonetti, A. D. Sánchez, and D. F.
Grosz, “A geometrical view of scalar modulation instability in optical
fibers,” IEEE Photonics J. 9, 1–8 (2017).

27. P. Pureza, V. Nguyen, F. Kung, and I. Aggarwal, “Nonlinear properties
of chalcogenide glass fibers,” J. Optoelectronics Adv. Mater. 8, 2148–
2155 (2006).

28. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J.
Eggleton, “Supercontinuum generation in dispersion engineered highly
nonlinear (γ = 10 /w/m) As2S3 chalcogenide planar waveguide,” Opt.
Express 16, 14938–14944 (2008).

29. A. Tuniz, G. Brawley, D. Moss, and B. Eggleton, “Two-photon absorption
effects on raman gain in single mode As2Se3 chalcogenide glass fiber,”
Opt. express 16, 18524–18534 (2008).

30. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B.
Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosec-
ond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl.
Opt. 48, 5467–5474 (2009).

31. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide
photonics,” Nat. Photonics 5, 141–148 (2011).

32. M. R. Karim, B. M. A. Rahman, and G. P. Agrawal, “Mid-infrared super-
continuum generation using dispersion-engineered Ge11.5As24Se64.5
chalcogenide channel waveguide,” Opt. Express 23, 6903–6914
(2015).

33. S. Coen, D. A. Wardle, and J. D. Harvey, “Observation of non-phase-
matched parametric amplification in resonant nonlinear optics,” Phys.
review letters 89, 273901 (2002).


	Introduction
	Full model of modulation instability
	Raman and modulation instability
	Conclusions

