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a b s t r a c t

For time-invariant systems, the property of input-to-state stability (ISS) is known to be strictly stronger
than integral-ISS (iISS). Known proofs of the fact that ISS implies iISS employ Lyapunov characteri-
zations of both properties. For time-varying and switched systems, such Lyapunov characterizations
may not exist, and hence establishing the exact relationship between ISS and iISS remained an open
problem, until now. In this paper, we solve this problem by providing a direct proof, i.e. without
requiring Lyapunov characterizations, of the fact that ISS implies iISS, in a very general time-varying
and switched-system context. In addition, we show how to construct suitable iISS gains based on the
comparison functions that characterize the ISS property, and on bounds on the function f defining the
system dynamics. When particularized to time-invariant systems, our assumptions are even weaker
than existing ones. Another contribution is to show that for time-varying systems, local Lipschitz
continuity of f in all variables is not sufficient to guarantee that ISS implies iISS. We illustrate
application of our results on an example that does not admit an iISS-Lyapunov function.

1. Introduction

Both input-to-state stability (ISS) and integral-input-to-state
stability (iISS) can be considered nonlinear-system extensions of
the type of stability that a linear time-invariant system with
inputs is known to have. The norm of the state of a system that is
either ISS or iISS can be bounded by the sum of a term depending
only on the initial state norm and decaying asymptotically to zero,
and a term depending only on the input. Loosely speaking, for ISS
the input-dependent term depends on a bound on the maximum
input amplitude whereas for iISS, the dependence is on the input
energy.

The concepts of ISS and iISS, originally introduced for time-
invariant continuous-time systems in, respectively, Sontag (1989,
1998), were subsequently extended and studied for other classes
of systems: time-varying systems (Edwards, Lin, & Wang, 2000),
discrete-time systems (Jiang & Wang, 2001), switched systems
(Haimovich & Mancilla-Aguilar, 2018; Mancilla-Aguilar & García,
2001), impulsive systems (Hespanha, Liberzon, & Teel, 2008),
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hybrid systems (Cai & Teel, 2009; Noroozi, Khayatian, & Geisel-
hart, 2017) and infinite dimensional systems (Dashkovskiy &
Mironchenko, 2013; Mironchenko & Wirth, 2018).

For time-invariant systems, ISS was shown to be equivalent to
the existence of a dissipation-form ISS-Lyapunov function (Son-
tag & Wang, 1995), and analogously for iISS (Angeli, Sontag, &
Wang, 2000a). Based on these Lyapunov characterizations of ISS
and iISS, it is easy to see that if a system is ISS, then it also
is iISS (Angeli et al., 2000a). In other words, for time-invariant
systems, it is known that ISS implies iISS. The only requirement
for the latter implication to hold is that the function f defining
the system dynamics ẋ = fti(x, u) be locally Lipschitz. Loosely
speaking, classes of systems where ISS is equivalent to the ex-
istence of a dissipation-form ISS-Lyapunov function make the
implication ISS ⇒ iISS hold. For such classes of systems, the
latter implication can be established almost identically as for
continuous-time time-invariant systems. Some of these classes
are, for example, time-invariant switched systems under arbitrary
switching (Mancilla-Aguilar & García, 2001) and time-invariant
hybrid systems (Cai & Teel, 2009; Noroozi et al., 2017).

Although many other characterizations of ISS (Liberzon &
Shim, 2015; Sontag & Wang, 1995, 1996) and iISS (Angeli et al.,
2000a; Angeli, Sontag, & Wang, 2000b; Haimovich & Mancilla-
Aguilar, 2018) exist, until now the only known way of proving
that ISS implies iISS was based on a dissipation-form ISS-Lyapunov
function as mentioned above. Therefore, classes of systems for
which ISS is not necessarily equivalent to the existence of a
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dissipation-form ISS-Lyapunov function, such as continuous-time
time-varying systems (see Edwards et al., 2000) or switched
systems under restricted switching (see Haimovich & Mancilla-
Aguilar, 2018), cause the question of whether ISS implies iISS to
remain open.

In Kellett, Wirth, and Dower (2013), the concepts of ISS and
iISS with respect to two measures were analyzed for continuous-
time time-invariant systems. The main difference with respect to
the standard corresponding properties is that the set to which the
state asymptotically converges need not be compact. In Kellett
et al. (2013), it is also shown that the noncompactness of the
convergence sets may destroy the link between ISS and iISS, in
the sense that a system may be ISS but not iISS, both with respect
to two measures. Considering time as a state variable and under
some regularity conditions, an ISS continuous-time time-varying
system can be written as a time-invariant system which is ISS
with respect to an unbounded invariant set. Therefore, the results
in Kellett et al. (2013) suggest that the implication ISS ⇒ iISS may
no longer hold true for general time-varying systems.

In this paper, and as the title claims, we show that ISS implies
iISS even for time-varying and switched systems, and in cases
where Lyapunov characterizations of ISS and iISS may not exist.
We thus contribute to solving a control theory problem that
still remained open. We show that the implication holds under
specific boundedness and continuity conditions on the function
defining system dynamics. These boundedness and continuity
conditions are weaker than local Lipschitz continuity of fti when
particularized to time-invariant systems ẋ = fti(x, u), because
Lipschitz continuity with respect to the input variable u is not
required. However, and as a second contribution, we provide an
example of a time-varying system ẋ = ftv(t, x, u) with ftv locally
Lipschitz that is ISS but not iISS. This shows that local Lipschitz
continuity in all variables is not sufficient to guarantee that ISS
implies iISS and thus one must be careful when claiming that
ISS implies iISS. A third contribution is to show how suitable
iISS gains may be constructed based on bounds on the system
function and on the comparison functions characterizing ISS.

The remainder of the paper is organized as follows. Section 2
begins with a brief description of the notation employed, de-
scribes the type of systems considered, defines the required sta-
bility properties (ISS and iISS), explains the known relationship
between these properties, and ends with an example of a time-
varying system that is ISS but not iISS. Our main results are
contained in Section 3, where we show that ISS implies iISS under
specific conditions. Section 4 provides an example of a switched
system that is ISS and hence is shown to be iISS by means of
the current results. Conclusions are provided in Section 5. The
Appendices contain the proofs of some intermediate technical
results.

2. Preliminaries

2.1. Notation

The reals, nonnegative reals, positive reals, naturals and non-
negative integers are denoted by R, R≥0, R>0, N and N0, respec-
tively. |ξ | denotes the Euclidean norm of any ξ ∈ Rk. For any
k ∈ N and any r ≥ 0, we define Bk

r := {ξ ∈ Rk
: |ξ | ≤ r}. We

write σ ∈ K if σ : R≥0 → R≥0 is continuous, strictly increasing,
and σ (0) = 0. We write σ ∈ K∞ if σ ∈ K and σ is unbounded. Let
M(Rm) be the set of Lebesgue measurable functions u : R≥0 →

Rm. The elements of M(Rm) will be referred to as inputs. For any
input u, ∥u∥ = ess sup{|u(t)| : t ≥ 0}. L∞

loc(R
m) denotes the set of

all the locally essentially bounded inputs. Given χ ∈ K, L1loc,χ (R
m)

is the set of all the inputs u such that χ (|u|) is locally integrable.
For χ ∈ K and u ∈ M(Rm), we define ∥u∥χ =

∫
∞

0 χ (|u(t)|)dt .
For any input u and interval I ⊂ R≥0, uI : R≥0 → Rm is the
input defined by uI (s) = u(s) if s ∈ I and uI (s) = 0 otherwise. For
a, b ∈ R, we define a ∧ b := min{a, b}.

2.2. Systems considered

This work deals with a parametrized family of time-varying
control systems of the general form

ẋ(t) = fλ(t, x(t), u(t)), λ ∈ Λ, (1)

with Λ an arbitrary nonempty set – the parameter set, – and
where x(t) ∈ Rn and u(t) ∈ Rm for t ∈ R≥0, and for every λ ∈ Λ,
fλ : R≥0 × Rn

× Rm
→ Rn satisfies fλ(t, 0, 0) = 0 for all t ≥ 0

(more precise assumptions on fλ will be given in Section 3.1).

Remark 2.1. When we speak about a parametrized family of
time-varying systems, we just mean that to each λ ∈ Λ we
have associated a system with inputs whose system function is
denoted by fλ. The set Λ can be any nonempty set without any
additional structure. This is just a way to describe a family of
systems, and the parameters λ play the role of labels identifying
each of the systems in the family. ◦

For an input u and λ ∈ Λ, a (forward) solution of (1) is a
locally absolutely continuous function x : [t0, tf ) → Rn, with
0 ≤ t0 < tf , such that ẋ(t) = fλ(t, x(t), u(t)) for almost all
t ∈ [t0, tf ). A solution is maximally defined (in forward time) if
there does not exist another solution x̃ : [t0, t̃f ) of (1) such that
t̃f > tf and x(t) = x̃(t) for all t ∈ [t0, tf ).

Definition 2.2. We say that U ⊂ M(Rm) is a set of admissible
inputs if:

(a) for any interval I ⊂ R≥0 and any1 u ∈ U , uI ∈ U;
(b) for each u ∈ U , t0 ≥ 0, ξ ∈ Rn and λ ∈ Λ, there exist a

unique maximally defined solution x of (1) which satisfies
x(t0) = ξ ;

(c) L∞

loc(R
m) ⊂ U , i.e. locally essentially bounded Lebesgue

measurable functions are always admissible as inputs.

For a given set U of admissible inputs, we will denote by
x(·, t0, ξ , u, λ) the unique maximally defined solution of (1) cor-
responding to u ∈ U and λ ∈ Λ which satisfies x(t0, t0, ξ , u, λ) =

ξ and by It0,ξ ,u,λ its forward interval of definition. We say that
x(·, t0, ξ , u, λ) is forward complete if It0,ξ ,u,λ = [t0, ∞), and that
the family of systems is forward complete if x(·, t0, ξ , u, λ) is
forward complete for every λ ∈ Λ, t0 ≥ 0, ξ ∈ Rn and u ∈ U .

It is clear that the setting (1) is sufficiently general so as to
describe time-invariant and time-varying, single systems as well
as families of systems. For clarity and future reference, we provide
the following definitions.

Definition 2.3. A family of the form (1) is said to be

(a) time-invariant if for every λ ∈ Λ, fλ does not depend on
t ∈ R≥0.

(b) a (single) system if Λ has a single element.
(c) a time-invariant system if the family is both time-invariant

and a single system.

The setting (1) can also be used to appropriately describe
switched systems. This is explained in the next subsection.

2.3. Switched systems as parametrized families of systems

A switched system can be defined by an equation of the form

ẋ(t) = fsw(t, x(t), u(t), σ (t)), (2)

1 Recall that uI (s) = u(s) if s ∈ I and uI (s) = 0 otherwise.



where fsw : R≥0×Rn
×Rm

×Γ → Rn, with Γ a nonempty set – the
index set –, and σ : R≥0 → Γ a piecewise constant2 and right-
continuous function – the switching signal –. The symbol σ is
employed to denote the whole function whereas σ (t) is employed
to denote the value of σ at time t [i.e. σ (t) indicates the active
subsystem at time t]. Therefore, σ and σ (t) represent different
objects and belong to different sets: σ belongs to the set Sall of
all the possible switching signals and σ (t) ∈ Γ . Each switching
signal σ gives rise to a time-varying system with inputs, namely
ẋ(t) = fσ (t, x(t), u(t)) (here σ is interpreted as a label) whose
system function fσ : R≥0 × Rn

× Rm
→ Rn is defined by

fσ (t, ξ , µ) := fsw(t, ξ , µ, σ (t)). (3)

In the context of switched systems, if every switching signal is
admissible, then we speak about ‘‘arbitrary switching’’; if switch-
ing is constrained to have some minimum dwell-time, we speak
about ‘‘dwell-time switching’’. In every case, we may define a
set S ⊂ Sall containing the admissible switching signals (e.g. all
the switching signals under arbitrary switching and only those
that have a minimum dwell time under dwell-time switching).
By setting Λ = S in (1), it is easy to see that a switched system
can be identified with a parametrized family of time-varying
systems, where the admissible switching signals play the role of
parameters (i.e. labels). Note that although the index set Γ may
be finite, the parameter set Λ is usually infinite since the latter set
equals S and not Γ . This is illustrated in the following example.

Example 1. Consider the switched linear system with two modes
and under arbitrary switching, given by

ẋ(t) = fsw(t, x(t), u(t), σ (t)) := Aσ (t)x(t) + bσ (t)u(t),

with Ai ∈ Rn×n and bi ∈ Rn for i ∈ Γ := {1, 2}. The admissible
switching signals S are all the piecewise constant and right-
continuous functions σ : R≥0 → Γ . For each switching sig-
nal σ ∈ S , the corresponding time-varying system is ẋ(t) =

fσ (t, x(t), u(t)), with fσ (t, ξ , µ) ≡ Aσ (t)ξ + bσ (t)µ. Note that there
exist an infinite number of admissible switching signals, and
hence Λ = S is infinite. ◦

2.4. Stability properties: ISS and iISS

For the parametrized family of systems (1) and the set of
admissible inputs U we will consider the following input-to-state
stability properties which are uniform over the set of param-
eters Λ. Their definitions are very natural extensions of those
introduced in Sontag (1989, 1998) for time-invariant systems.

Definition 2.4. Consider a family of systems (1) and a set U of
admissible inputs.

(a) The family of systems (1) is input-to-state stable (ISS) if
there exist β ∈ KL and ρ ∈ K∞ such that for every t0 ≥ 0,
ξ ∈ Rn, u ∈ U and λ ∈ Λ, x(·) = x(·, t0, ξ , u, λ) satisfies the
following estimate for all t ∈ It0,ξ ,u,λ:

|x(t)| ≤ β(|x(t0)|, t − t0) + ρ (∥u∥) . (4)

The function ρ will be referred to as an ISS gain.
(b) The family of systems (1) is integral input-to-state stable

(iISS) if there exist β ∈ KL and γ1, γ2 ∈ K∞ such that
for every t0 ≥ 0, ξ ∈ Rn, u ∈ U and λ ∈ Λ, x(·) =

x(·, t0, ξ , u, λ) satisfies the following estimate for all3 t ∈

It0,ξ ,u,λ,

|x(t)| ≤ β(|x(t0)|, t − t0) + γ1
(
∥u∥γ2

)
. (5)

2 With a finite number of discontinuities in every bounded interval.
3 Recall the notation ∥u∥γ2 =

∫
∞

0 γ2(|u(t)|)dt .

The function γ2 will be referred to as an iISS gain.

Remark 2.5. Due to causality and the Markov property, equiv-
alent definitions of ISS and iISS are obtained if u is replaced by
u[t0,t] in (4) and (5), respectively. Note that we do not require
the solutions of (1) to be defined for all t ≥ t0 in the definitions
of ISS and iISS. Notwithstanding, well-known results for ordinary
differential equations show that if the family (1) is ISS (resp.
iISS) then for every input u ∈ U such that ∥u[t0,t]∥ < ∞ (resp.
∥u[t0,t]∥γ2 < ∞), it happens that [t0, t] ⊂ It0,ξ ,u,λ. Therefore, the
solutions of (1) are forward complete for all u ∈ L∞

loc(R
m) (resp.

u ∈ L1loc,γ2 (R
m)∩ U ), when the family of systems is ISS (resp. iISS

with iISS gain γ2). ◦

Remark 2.6. When a family of systems is ISS for some set
of admissible inputs U , then it also is ISS for any other set of
admissible inputs U ′ and, in particular, for the set L∞

loc(R
m), which

is the set of admissible inputs usually considered in the ISS
framework. As a consequence, we do not need to make the set U
explicit when dealing with the ISS property. By contrast, the set
of admissible inputs U plays a relevant role in the case of the iISS
property, since, for example, a family of systems could be iISS for
U = L∞

loc(R
m) but not for a larger U . Considering sets U larger than

L∞

loc(R
m) in the iISS property allows us to study the dependence of

the states upon inputs which are not locally essentially bounded
but have ‘‘finite energy’’ on every finite interval. ◦

2.5. Known relationship between ISS and iISS

A natural question is: what is the precise relationship between
the ISS and iISS properties? Since ∥u∥ and ∥u∥γ2 are nonequiva-
lent ways of measuring the size of an input u, this question cannot
be answered directly from the very definitions of the properties.
By means of Lyapunov characterizations, this question has been
answered for time-invariant systems, when (1) can be put into
the form

ẋ(t) = fti(x(t), u(t)), (6)

with fti : Rn
×Rm

→ Rn. For this specific case, it was shown that
ISS implies iISS if fti is locally Lipschitz and the admissible inputs
are locally essentially bounded, i.e. U = L∞

loc(R
m). Also for time-

invariant systems, it was shown that the converse implication
does not hold. To provide further insight into this relationship,
we recall known characterizations of ISS and iISS, and the main
argument used to prove that ISS implies iISS. For future reference,
we formulate these results employing our notation for families of
systems (1).

Definition 2.7. A function V : R≥0 × Rn
× Λ → R≥0, which

is smooth in the first two arguments, and for which there exist
α1, α2 ∈ K∞ such that for all t0 ≥ 0, ξ ∈ Rn and λ ∈ Λ,

α1(|ξ |) ≤ V (t, ξ , λ) ≤ α2(|ξ |), (7)

is said to be

(a) a dissipation-form ISS-Lyapunov function for (1) if there
exist α3 ∈ K∞ and η ∈ K such that the following holds
for all t ≥ 0, ξ ∈ Rn, µ ∈ Rm and λ ∈ Λ,
∂V
∂t

+
∂V
∂ξ

fλ(t, ξ , µ) ≤ −α3(|ξ |) + η(|µ|); (8)

(b) an implication-form ISS-Lyapunov function for (1) if there
exist α4, χ ∈ K∞ such that for every (t, ξ , µ, λ) ∈ R≥0 ×

Rn
× Rm

× Λ for which |ξ | ≥ χ (|µ|), then
∂V
∂t

+
∂V
∂ξ

fλ(t, ξ , µ) ≤ −α4(|ξ |); (9)



(c) an iISS-Lyapunov function for (1) if there exist η ∈ K and
α5 : R≥0 → R≥0 continuous and positive definite, such
that the following holds for all t ≥ 0, ξ ∈ Rn, µ ∈ Rm and
λ ∈ Λ,
∂V
∂t

+
∂V
∂ξ

fλ(t, ξ , µ) ≤ −α5(|ξ |) + η(|µ|). (10)

Any of the functions V from Definition 2.7 are said to be
time-invariant if they do not depend on t .

By setting U = L∞

loc(R
m) and proceeding as in Sontag and Wang

(1995) for ISS and as in Angeli et al. (2000a) for iISS, it can be
shown that the existence of a dissipation- or implication-form
ISS-Lyapunov function implies that the family of systems is ISS
and that the existence of an iISS-Lyapunov function implies that
the family is iISS. For time-invariant systems the following results
are well-known (see Angeli et al., 2000a and Sontag & Wang,
1995).

Theorem 2.8. Let U = L∞

loc(R
m). The time-invariant system (6) with

fti locally Lipschitz is

(i) ISS if and only if it admits a time-invariant dissipation-form
ISS-Lyapunov function.

(ii) ISS if and only if it admits a time-invariant implication-form
ISS-Lyapunov function.

(iii) iISS if and only if it admits a time-invariant iISS-Lyapunov
function.

From inequalities (8) and (10) for the dissipation-form ISS-
Lyapunov and iISS-Lyapunov functions, it is easy to see that
under the assumptions of Theorem 2.8, ISS implies iISS. Also from
Theorem 2.8, it follows that a time-invariant system admits a
dissipation-form ISS-Lyapunov function if and only if it admits an
implication-form one. Loosely speaking, we may say that existing
proofs of the fact that ISS implies iISS require Lyapunov charac-
terizations for both properties. However, extra care must be taken
for time-varying systems, as we next show.

2.6. A first obstacle for time-varying systems

For a time-varying system, (1) can be put into the form

ẋ(t) = ftv(t, x(t), u(t)), (11)

with ftv : R≥0 × Rn
× Rm

→ Rn. If ftv is locally Lipschitz,
it was shown in Edwards et al. (2000) that (11) is ISS if and
only if it admits an implication-form ISS-Lyapunov function. Note,
however, that for establishing the implication ISS ⇒ iISS as
explained above, a dissipation-form ISS-Lyapunov function is re-
quired. In Edwards et al. (2000), an example of a specific time-
varying system that admits an implication-form ISS-Lyapunov
function which is not a dissipation-form ISS-Lyapunov function
was given. A first contribution of this paper is to show that local
Lipschitz continuity of ftv is not sufficient to guarantee that ISS
implies iISS. This is established in Proposition 2.9.

Proposition 2.9. Let U = L∞

loc(R
m). There exists a system of the

form (11), with ftv : R≥0 × Rn
× Rm

→ Rn locally Lipschitz, such
that it is ISS but not iISS.

Proof. Consider the one-dimensional single-input time-varying
system considered in Edwards et al. (2000),

ẋ = −x + (1 + t)g(u − |x|) =: ftv(t, x, u), (12)

with ftv : R≥0 × R × R → R and g : R → R defined as follows:
g(s) = 0 for all s ≤ 0 and g(s) = s for all s > 0. It is clear that ftv
is locally Lipschitz in (t, x, u). The function V (t, ξ , λ) = V̄ (ξ ) = ξ 2

is a time-invariant implication-form ISS-Lyapunov function for
system (12), because it satisfies (7) with α1(r) = α2(r) = r2, and

V̄ (ξ ) ≥ |µ|
2

H⇒ ∇V̄ (ξ )ftv(t, ξ , µ) = −2V̄ (ξ ).

Then system (12) is ISS.
Next, we show that the system is not iISS. Suppose for a

contradiction that it is iISS, and let β ∈ KL, and γ1, γ2 ∈ K∞

characterize the iISS property, as in (5). Let M := 4γ1(1). For
t0 ≥ 1 consider ut0 : R≥0 → R defined as follows: ut0 (t) = 0
if t < t0 and ut0 (t) = M if t ≥ t0. Let xt0 (·) = x(·, t0, 0, ut0 ). Since
ẋt0 is continuous and ẋt0 (t0) = ftv(t0, 0,M) = (1 + t0)M > 0,
then ẋt0 is positive on some interval (t0, t ′) with t ′ > t0. Let
T = sup{t : t > t0, 0 < ẋt0 (s) ∀s ∈ (t0, t)}. We have that T > t0,
ẋt0 (s) > 0 for all s ∈ (t0, T ) and that ẋt0 (T ) = 0 if T is finite. Since
ftv(t, ξ ,M) ≥ M/2 for all 0 ≤ ξ ≤ M/2 and t ≥ 1, and x is strictly
increasing in [t0, T ), there exists a unique τt0 ∈ (t0, T ) such that
xt0 (τt0 ) = M/2. Since 0 ≤ xt0 (t) ≤ M/2 for all t ∈ [t0, τt0 ], we
have that

ẋt0 (t) ≥
Mt
2

∀t ∈ [t0, τt0 ].

Integrating the above inequality from t0 to τt0 , we reach

M
2

= xt0 (τt0 ) ≥
M
4

(
τ 2
t0 − t20

)
=

M
4
(τt0 − t0)(τt0 + t0).

Consequently, (τt0 − t0)(τt0 + t0) ≤ 2, and therefore τt0 − t0 ≤

2/(τt0 + t0) ≤ 2/t0. If we take t0 := 2γ2(M) with xt0 (t0) = 0, then
we have that τt0 − t0 ≤ 1/γ2(M) and that

2γ1(1) = |xt0 (τt0 )|

≤ β(|x(t0)|, τt0 − t0) + γ1

(∫ τt0

t0

γ2(M) ds
)

≤ γ1(1).

We have thus arrived to a contradiction. This establishes that the
system is not iISS. ■

Remark 2.10. The system (12) can be posed as a time-invariant
system by treating t as a state variable and considering the
extended system formed by (12) and ṫ = 1. Then, the ISS and iISS
properties of (12) coincide with the ISS and iISS of the extended
system with respect to the two measures ω1(x, t) = ω2(x, t) =

|x|, as per Definitions 1 and 4 of Kellett et al. (2013). In this
context, the system in the proof of Proposition 2.9 is an example
of the fact that ISS with respect to two measures does not imply
iISS with respect to two measures. This example seems to be
simpler than Example 2 in Section 4.2 of Kellett et al. (2013). ◦

In the next section, we will show that appropriate assumptions
on the functions fλ indeed ensure that ISS ⇒ iISS for parametrized
time-varying control systems.

3. Main results: ISS implies iISS

In this section, we prove that under suitable assumptions, it
is true that ISS implies iISS in the general context considered.
Three interesting features of the proof we give are: (a) it does
not rely on Lyapunov characterizations; (b) the set of admissible
inputs U for which the family of systems is proved to be iISS is
larger than L∞

loc(R
m); (c) it provides a relationship between the

ISS and iISS gains in terms of bounds on the system functions
fλ. Existing proofs of the fact that ISS implies iISS can also pro-
vide relationships between the aforementioned gains, but only
in terms of the comparison functions appearing in the Lyapunov
characterizations.

In Section 3.1, we state the assumptions required, our main
result, and provide comments on the assumptions. Worthy of
mention is the fact that Lipschitz continuity with respect to the



input variable is not required as an assumption. The proof of our
main result is given along Sections 3.2–3.4. In Section 3.2, we
derive an equivalent formulation for the required assumptions.
In Section 3.3, we show that an existing characterization of iISS,
valid for switched systems, also holds for families of systems. In
Section 3.4, we provide the main proof, employing the results in
the previous subsections. Discussion and further comments are
given in Section 3.5.

3.1. Assumptions and main theorem

The assumptions required are given next.

Assumption 1. The functions fλ in (1) satisfy:

(A1) for every λ ∈ Λ, fλ(·, ξ , µ) is Lebesgue measurable for all
(ξ, µ) ∈ Rn

× Rm.
(A2) For every r, s ≥ 0, there exists L1 = L1(r, s) ≥ 0 such that

|fλ(t, ξ1, µ) − fλ(t, ξ2, µ)| ≤ L1|ξ1 − ξ2| (13)

for all t ≥ 0, ξ1, ξ2 ∈ Bn
r , µ ∈ Bm

s and λ ∈ Λ.
(A3) There exists ω ∈ K∞ and for every r, s ≥ 0, there exists

L2 = L2(r, s) ≥ 0 such that

|fλ(t, ξ , µ1) − fλ(t, ξ , µ2)| ≤ L2ω(|µ1 − µ2|) (14)

for all t ≥ 0, ξ ∈ Bn
r , µ1, µ2 ∈ Bm

s and λ ∈ Λ.

Remark 3.1. Without loss of generality, L1 and L2 in
Assumption 1 can be assumed continuous and nondecreasing in
each variable. ◦

Remark 3.2. Consider the switched system (2) with fsw : R≥0 ×

Rn
× Rm

× Γ → Rn such that the family of functions fswi ,
i ∈ Γ , where fswi (·, ·, ·) := fsw(·, ·, ·, i), satisfies the conditions
in Assumption 1, with i in place of λ and Γ instead of Λ (i.e. as
would be posed within a switched system context). Then, we
show that for any subset S of admissible switching signals, the
parametrized family of time-varying systems

ẋ(t) = fσ (t, x(t), u(t)), σ ∈ S,

with fσ defined as in (3), satisfies Assumption 1. From the defini-
tion of fσ and the fact that fswi satisfies (A2) and (A3) for all i ∈ Γ ,
it easily follows that fσ satisfies (A2) and (A3) for all σ ∈ S. In
order to show that fσ satisfies (A1), define τ0 := 0 and consider
the strictly increasing sequence {τk}

N
k=1 of switching times of σ ,

where N may be finite or ∞. Define the sequence {ik}Nk=0 through
ik := σ (τk). If N = ∞, then τk → ∞ (because σ has a finite num-
ber of discontinuities in every bounded interval). For each k ∈ N0,
let gk(t) = 1 if τk ≤ t < τk+1 and gk(t) = 0 otherwise. Then, for
each (ξ, µ), we have fσ (t, ξ , µ) =

∑
∞

k=0 gk(t)fsw(t, ξ , µ, ik) for all
t ≥ 0. Since gk(·)fsw(·, ξ , µ, ik) is Lebesgue measurable for each k,
the measurability of fσ (·, ξ , µ) follows. The case when N is finite
can be proved in a similar way. ◦

Our main result is the following.

Theorem 3.3. Consider a family (1) for which Assumption 1 holds.
Suppose that the family is ISS. Then there exists χ̂ ∈ K∞ such that
U = L1loc,χ̂ (R

m) is a set of admissible inputs and the family is iISS
with iISS gain χ̂ .

The proof of Theorem 3.3 is given along the next subsections.
The construction of suitable iISS gains will be explained later, in
Section 3.4. We next provide some comments on the required
Assumption 1. First, note that (A2) imposes local Lipschitz con-
tinuity of fλ in (1) with respect to the state variable, uniformly
over every t ≥ 0 and λ ∈ Λ, and also over state and input values
in compact sets. By contrast, (A3) does not require Lipschitz
continuity with respect to the input variable although a type of
uniform continuity is indeed required. In the case of a single
time-invariant system, and since local Lipschitz continuity with
respect to the input variable is not required, then Assumption 1
is weaker than requiring local Lipschitz continuity of fti in (6). The
assumptions of Theorem 3.3 are thus weaker than existing ones
for time-invariant systems.

3.2. Equivalent assumptions

We next show that Assumption 1 can be equivalently formu-
lated in an apparently very different manner. Establishing this
equivalent formulation is important since it will both simplify the
proof of Theorem 3.3 and allow the construction of iISS gains. The
proof of Lemma 3.4 is given in Appendix A.

Lemma 3.4. The functions fλ in (1) satisfy (A2)–(A3) of
Assumption 1 if and only if they satisfy (B1)–(B2):

(B1) There exists γ̃ ∈ K∞ and nondecreasing and continuous
functions N,O : R≥0 → R≥0 such that4

|fλ(t, ξ , µ1) − fλ(t, ξ , µ2)| ≤

γ̃ (|µ1 − µ2|)
[
N(|ξ |) + O

(
|µ1| ∧ |µ2|

)]
holds for all t ≥ 0, ξ ∈ Rn, µ1, µ2 ∈ Rm and λ ∈ Λ.

(B2) There exists η, γ ∈ K∞, and P : R≥0 → R≥0 nondecreasing
and continuous, such that

lim sup
s→0+

η(s)
s

< ∞ (15)

and for all t ≥ 0, ξ1, ξ2 ∈ Rn, µ ∈ Rm, and λ ∈ Λ,

|fλ(t, ξ1, µ) − fλ(t, ξ2, µ)| ≤

η(|ξ1 − ξ2|)[P(|ξ1| ∧ |ξ2|) + γ (|µ|)].

Remark 3.5. Since η ∈ K∞ in (B2), from (15) it follows that for
every M > 0 there exists L = L(M) so that

η(s) ≤ Ls for all 0 ≤ s ≤ M, (16)

where the function L(·) can be taken continuous and nondecreas-
ing. ◦

The following lemma, whose proof is provided in Appendix B,
gives a bound on fλ that will be required later and a first result
on the sets of admissible inputs.

Lemma 3.6. Let Assumption 1 hold, and consider γ , γ̃ ∈ K∞ from
Lemma 3.4. Then,

(i) There exists a nondecreasing function N̂ : R≥0 → R>0 such
that |fλ(t, ξ , µ)| ≤ N̂(|ξ |)(1+γ̃ (|µ|)) for all t ≥ 0, all ξ ∈ Rn,
all µ ∈ Rm and all λ ∈ Λ.

4 Recall the notation a ∧ b = min{a, b}.



(ii) For every χ ∈ K∞ such that χ ≥ max{γ , γ̃ }, L1loc,χ (R
m) is a

set of admissible inputs for (1).

3.3. An existing characterization of iISS

The proof of our main result is based on a characterization of
the iISS property which was obtained in Haimovich and Mancilla-
Aguilar (2018). This characterization essentially says that iISS
is equivalent to zero-input global uniform asymptotic stability
in combination with uniform bounded-energy input/bounded
state (Angeli et al., 2000b), even for (families of) time-varying
systems. We next recall the corresponding definitions.

Definition 3.7. Let U be a set of admissible inputs for the family
of systems (1). The family is said to be uniformly bounded-energy
input/bounded state (UBEBS), if there exist functions α, φ, γ2 ∈

K∞ (γ2 will be referred to as an UBEBS gain), and a constant
c ≥ 0, such that for every t0 ≥ 0, ξ ∈ Rn, u ∈ U and λ ∈ Λ,
x(·) = x(·, t0, ξ , u, λ) satisfies the following estimate for all t ∈

It0,ξ ,u,λ,

|x(t)| ≤ α(|x(t0)|) + φ
(
∥u∥γ2

)
+ c. (17)

Remark 3.8. Analogously to Remark 2.5, an equivalent definition
of UBEBS is obtained if u is replaced by u[t0,t] in (17), and the
solutions of (1) are forward complete for all inputs u ∈ L1loc,γ2 (R

m)
∩ U . ◦

Definition 3.9. The family (1) is said to be zero-input globally
uniformly asymptotically stable (0-GUAS) if there exists β ∈ KL
such that for every t0 ≥ 0, ξ ∈ Rn and λ ∈ Λ, x(·) =

x(·, t0, ξ , 0, λ), where 0 denotes the input u ∈ U such that u(s) =

0 for all s ≥ 0, verifies

|x(t)| ≤ β(|x(t0)|, t − t0) for all t ≥ t0 ≥ 0. (18)

Theorem 3.10. Let the functions fλ in (1) satisfy Assumption 1,
and consider γ , γ̃ ∈ K∞ from Lemma 3.4. Let χ ∈ K∞ satisfy
χ ≥ max{γ , γ̃ }, and set U = L1loc,χ (R

m). Then, if the family (1)
is 0-GUAS and UBEBS with UBEBS gain γ2, then it is iISS with iISS
gain max{χ, γ2}.

Proof. First, note that by Lemma 3.6(ii), U is a set of admissible
inputs. In Section 2.3 we have shown that a switched system can
be posed as a parametrized family of systems. This proof is based
on the converse: posing a parametrized family as a switched sys-
tem, and applying the results in Haimovich and Mancilla-Aguilar
(2018). This converse formulation is possible because the index
set over which the switching signal takes values in Haimovich
and Mancilla-Aguilar (2018) is just any arbitrary nonempty set,
and hence it can be, e.g., infinite and uncountable. Consider
the (possibly infinite, uncountable) index set Γ := Λ, and set
fsw(t, ξ , µ, λ) := fλ(t, ξ , µ). Define the set of admissible switching
signals, S , as the set of all the constant functions σ : R≥0 → Λ.
Then, the resulting family of time-varying systems (1) is iISS,
UBEBS or 0-GUAS (according to Definitions 2.4, 3.7 or 3.9) if and
only if (2), with inputs in U is, respectively, iISS w.r.t. S , UBEBS
w.r.t. S or 0-GUAS w.r.t. S , (according to Definitions 1, 4 or 3
in Haimovich and Mancilla-Aguilar (2018)).

Note that fλ(t, 0, 0) = 0 for every λ ∈ Γ and hence the blanket
assumption in Haimovich and Mancilla-Aguilar (2018) is satisfied.
Assumption 1 of Haimovich and Mancilla-Aguilar (2018) also is
satisfied. In fact, condition (C1) in Assumption 1 of Haimovich and
Mancilla-Aguilar (2018) coincides with (i) in Lemma 3.6, while
(C2) and (C3) in such an assumption straightforwardly follow
from (B1) and (B2), respectively, the latter taking Remark 3.5
into account. Therefore, the switched system (2) satisfies the

assumptions of Theorem 1 in Haimovich and Mancilla-Aguilar
(2018). We must remark that Haimovich and Mancilla-Aguilar
(2018) assumes throughout that the set of admissible inputs
is L∞

loc(R
m). Nevertheless, this assumption was only meant to

guarantee existence (but not uniqueness) of solutions of the
corresponding switched system. Under the current assumptions,
solutions not only exist but also are unique, and hence Theorem 1
of Haimovich and Mancilla-Aguilar (2018) remains valid in the
current context. The proof then follows from item b) of Theorem 1
of Haimovich and Mancilla-Aguilar (2018), taking into account
that γ from Theorem 1 of Haimovich and Mancilla-Aguilar (2018)
corresponds to γ̃ of Lemma 3.4. ■

3.4. A direct proof that ISS implies iISS

We shall prove that ISS implies iISS by showing that ISS
implies UBEBS, and applying Theorem 3.10. We require the fol-
lowing technical result, whose proof is given in Appendix C.

Lemma 3.11. Let g1 : R>0 → R≥0 and g2 : R≥0 → R≥0 be
continuous. Then, there exist κ, φ ∈ K∞ and c ≥ 0 such that

κ(r) ≥ g1(r)g2(s), for all r ≥ φ(s) + c and s ≥ 0. (19)

For proving that ISS implies UBEBS and to keep track of the
UBEBS gain, we need to define some auxiliary functions.

Suppose that the family (1) is ISS and that the functions fλ
satisfy Assumption 1. Let β ∈ KL and ρ ∈ K∞ characterize the ISS
property and let N,O, P, η, γ , γ̃ be given by Lemma 3.4. Define
h1, h2 : R2

≥0 → R via

h1(r, b) := N(β(r, 0) + ρ(b)) + O(b), (20)

h2(r, b) := P(β(r, 0) + ρ(b)). (21)

Let L : R≥0 → R≥0 be continuous, nondecreasing, and such that
for every M ≥ 0, (16) holds with L = L(M). In correspondence
with every r > 0, define Tr ≥ 0 continuous and such that

β(r, Tr ) ≤ r/3. (22)

Define also

br := ρ−1(r/3),Mr := r/3, Lr := L(Mr ). (23)

Define g1 : R>0 → R≥0 and g2 : R≥0 → R≥0 via

g1(r) =
h1(r, br )eLr Trh2(r,br )+L2r /2

Mr
, (24)

g2(s) = ses
2/2. (25)

Let κ be given by Lemma 3.11 for g1, g2 as above. Finally, define
α ∈ K∞ via

α(b) = κ(3ρ(b)). (26)

The following theorem establishes that under Assumption 1,
ISS implies UBEBS.

Theorem 3.12. Consider the family (1) and let Assumption 1 hold.
Suppose that the family is ISS. Let γ , γ̃ be given by Lemma 3.4
and let α be the function defined in (26). Let χ, χ̃ ∈ K∞ satisfy
χ̃ ≥ max{γ , γ̃ } and χ ≥ max{γ , γ̃ 2, α2

}. Set U = L1loc,χ̃ (R
m) as

the set of admissible inputs. Then, the family of systems is UBEBS
with UBEBS gain χ .

Proof. First, note that according to Lemma 3.6(ii), then U =

L1loc,χ̃ (R
m) is a set of admissible inputs. Given an input u ∈ U and

a constant b ≥ 0, let ub denote a new input, defined as follows:

ub(t) =

⎧⎨⎩
bu(t)
|u(t)|

if t ∈ Ωu(b),

u(t) otherwise,
(27)



Ωu(b) := {t ≥ 0 : |u(t)| > b}. (28)

Note that |ub(t)| = min{|u(t)|, b} for all t ≥ 0 and hence ∥ub∥ ≤ b
Let t0 ≥ 0, ξ ∈ Rn and λ ∈ Λ, and consider an input u ∈ U

such that

∥u∥χ =

∫
∞

0
χ (|u(s)|)ds =: E < ∞. (29)

Let x(·) = x(t, t0, ξ , u, λ) and define α̃ ∈ K∞ via

α̃(r) = β(r, 0) +
2r
3

, (30)

where β is the class-KL functions which characterizes the ISS
property. Let Tr ≥ 0, r ≥ 0, be continuous and satisfying (22).
Let κ, φ ∈ K∞ and c be given by Lemma 3.11 for the functions
g1 and g2 defined in (24) and (25) respectively. We can assume,
without loss of generality, that c > 0.

Claim 1. Let r be any real number such that r ≥ c + φ(E) and
|x(t0)| ≤ r, then

|x(t)| ≤ α̃(r) ∀t ≥ t0 (31)

Proof of Claim 1. For a fixed b ≥ 0, let xb(·) := x(·, t0, x(t0), ub, λ),
and ∆x = x − xb. Since (1) is ISS, then

|xb(t)| ≤ β(|x(t0)|, t − t0) + ρ(∥ub∥) ≤ β(r, 0) + ρ(b)

for all t ≥ t0. From (1) and Lemma 3.4, it follows that

|∆x(t)| ≤

∫ t

t0

⏐⏐⏐fλ(s, x(s), u(s)) − fλ(s, xb(s), ub(s))
⏐⏐⏐ds

≤

∫ t

t0

⏐⏐⏐fλ(s, x(s), u(s)) − fλ(s, xb(s), u(s))
⏐⏐⏐ds

+

∫ t

t0

⏐⏐⏐fλ(s, xb(s), u(s)) − fλ(s, xb(s), ub(s))
⏐⏐⏐ds

≤

∫ t

t0

η(|∆x(s)|)[P(|x(s)| ∧ |xb(s)|) + γ (|u(s)|)]ds

+

∫ t

t0

γ̃ (|u(s) − ub(s)|)[N(|xb(s)|) + O(|u(s)| ∧ |ub(s)|)]ds

holds for all t ≥ t0 for which x(t) exists. Then, for all t ≥ t0 for
which x(t) exists,

|∆x(t)| ≤

∫ t

t0

η(|∆x(s)|)[h2(r, b) + γ (|u(s)|)]ds

+ h1(r, b)
∫ t

t0

γ̃ (|u(s) − ub(s)|)ds (32)

For t ≥ t0, we have the following inequalities:∫ t

t0

γ̃ (|u(s) − ub(s)|)ds ≤

∫
Ωu(b)

γ̃ (|u(s)| − b)ds

≤

∫
Ωu(b)

γ̃ (|u(s)|)ds

Applying the Schwarz inequality, then∫
Ωu(b)

γ̃ (|u(s)|)ds ≤ |Ωu(b)|1/2
√∫

Ωu(b)
γ̃ 2(|u(s)|)ds

≤ |Ωu(b)|1/2
√
E,

where we have used the fact that χ ≥ γ̃ 2 and where |Ωu(b)|
denotes the Lebesgue measure of the set Ωu(b). Also, we have

E ≥

∫
Ωu(b)

χ (|u(s)|)ds ≥ |Ωu(b)|χ (b),

and hence

|Ωu(b)| ≤
E

χ (b)
, if b > 0.

Combining the obtained inequalities, we reach, for b > 0,∫ t

t0

γ̃ (|u(s) − ub(s)|)ds ≤
E

√
χ (b)

≤
E

α(b)
, (33)

where we have used the fact that χ ≥ α2. Let br ,Mr be in
correspondence with r as defined in (22)–(23) and consider b =

br . Define

τ := inf{t ≥ t0 : |∆x(t)| ≥ Mr}.

We next show that τ ≥ t0 + Tr . From the definition of τ and the
continuity of ∆x, we have

|∆x(t)| ≤ Mr , for all t0 ≤ t ≤ τ .

From (16), then η(|∆x(t)|) ≤ Lr |∆x(t)| for all t0 ≤ t ≤ τ .
From (32) and (33), then

|∆x(t)| ≤
h1(r, br )E

α(br )
+

∫ t

t0

[h2(r, br ) + γ (|u(s)|)]Lr |∆x(s)|ds

for all t0 ≤ t ≤ τ . Applying Gronwall’s inequality, we reach

|∆x(t)| ≤
h1(r, br )E

α(br )
e
∫ t
t0

[h2(r,br )+γ (|u(s)|)]Lrds

≤
h1(r, br )E

α(br )
eLr [(t−t0)h2(r,br )+E],

where we have used the fact that χ ≥ γ . Using the inequality
θϕ ≤ (θ2

+ ϕ2)/2, it follows that

h1(r, br )E
α(br )

eLr [Trh2(r,br )+E]
≤

g1(r)g2(E)
α(br )

Mr

=
g1(r)g2(E)

κ(r)
Mr ≤ Mr

because r ≥ c + φ(E). Therefore, τ ≥ t0 + Tr and hence |∆x(t)| ≤

Mr for all t0 ≤ t ≤ t0 + Tr . The solution x can be bounded as
follows

|x(t)| ≤ |xbr (t)| + |∆x(t)| ≤ β(r, t − t0) + ρ(br ) + Mr

≤ β(r, 0) + ρ(br ) + Mr = α̃(r),

for all t0 ≤ t ≤ t0 + Tr . In particular, at t1 := t0 + Tr , we also have

|x(t1)| ≤ β(r, Tr ) + ρ(br ) + Mr ≤ r.

By defining the sequence ti = t0 + iTr , i ∈ N0 and applying
recursively the precedent reasoning to ti in place of t0, we obtain

|x(t)| ≤ α̃(r) ∀t ∈ [ti, ti+1]

|x(ti+1)| ≤ r.

This concludes the proof of the claim. ◦

Next, we will prove that

|x(t)| ≤ max{α̃(|x(t0)|), α̃(φ(E) + c)}.

If |x(t0)| ≥ φ(E)+c , by applying Claim 1 with r = |x(t0)| it follows
that |x(t)| ≤ α̃(|x(t0)|) for all t ≥ t0.

If |x(t0)| < φ(E) + c , let t1 = inf{t ≥ t0 : |x(t)| ≥ φ(E) + c}. If
t1 = ∞, then |x(t)| < φ(E) + c ≤ α̃(φ(E) + c) for all t ≥ t0. If t1
is finite, then |x(t)| < φ(E) + c ≤ α̃(φ(E) + c) for all t ∈ [t0, t1)
and |x(t1)| = φ(E) + c. By applying Claim 1 with t1 instead of t0
and r := φ(E) + c we obtain |x(t)| ≤ α̃(φ(E) + c) for all t ≥ t1.
Therefore |x(t)| ≤ α̃(φ(E) + c) for all t ≥ t0.



Since for all t ≥ t0

|x(t)| ≤ max{α̃(|x(t0)|), α̃(φ(E) + c)}
≤ α̃(|x(t0)|) + α̃(φ(E) + c)
≤ α̃(|x(t0)|) + α̃(2φ(E)) + α̃(2c)

it follows that (1) is UBEBS with UBEBS gain χ . ■

We can now give the proof of our main result.

Proof of Theorem 3.3. Since the family (1) is ISS, then it is
0-GUAS. Let γ , γ̃ , α be as in the statement of Theorem 3.12, and
let χ̂ ∈ K∞ satisfy χ̂ ≥ max{γ , γ̃ , γ̃ 2, α2

}. By Theorem 3.12,
it follows that setting U = L1loc,χ̂ (R

m) as the set of admissible
inputs, (1) is UBEBS with UBEBS gain χ̂ . By Theorem 3.10 it then
follows that (1) is iISS with iISS gain χ̂ . This concludes the proof
of Theorem 3.3. ■

3.5. Discussion

We next provide some brief comments on our results and
proofs. Theorem 3.3 shows not only that under Assumption 1
ISS implies iISS but also that inputs need not be constrained
to be locally essentially bounded functions in order for the iISS
property to hold, provided the system equation solutions exist
and are unique.

The main idea in the proof of Theorem 3.3 is to show that ISS
implies UBEBS. This is established in Theorem 3.12. The proof of
Theorem 3.12 is based on establishing a bound on the difference
between the trajectories generated by an arbitrary input in the set
of admissible inputs and a bounded input constructed in corre-
spondence with the former. Lipschitz continuity of fλ with respect
to the state variable is required in order to apply Gronwall’s
inequality. An interesting question is whether the implication ISS
⇒ iISS also holds when solutions are not necessarily unique. If
this were the case, a suitable proof should avoid the need to
employ Gronwall’s inequality.

The relationships between the ISS, iISS, UBEBS and 0-GUAS
properties can be summarized as follows: ISS H⇒ 0-GUAS +
UBEBS ⇐⇒ iISS, where the first implication follows under
Assumption 1 and the if and only if is established in Haimovich
and Mancilla-Aguilar (2018).

4. Example

4.1. SQZ-source inverter model

Consider the ideal switched model of the semi-quasi-Z-source
inverter (Cao, Jiang, Yu, & Peng, 2011; Haimovich, Middleton, &
De Nicoló, 2013), connected to a cubic-law time-varying resis-
tive load and under time-varying input voltage u, similarly to
Example 4.1 in Mancilla-Aguilar, Haimovich, and García (2017):

ẋ(t) = fsw(t, x(t), u(t), σ (t))

with fsw : R≥0 × R4
× R × {1, 2} → R4,

fsw(t, ξ , µ, i) = Aiξ − e4gi(t, e′

4ξ ) + biµ,

e4 = [0 0 0 1]′, P = diag(L̄1, L̄2, C̄1, C̄2),

A1 = P−1
[

0 0 0 0
0 0 1 1
0 −1 0 0
0 −1 0 0

]
, A2 = P−1

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
,

b1 =
[
1/L̄1 0 0 0

]
, b2 =

[
0 − 1/L̄2 0 0

]
,

gi(t, v) =
Gi(t)
C̄2

v3, Gi(t) = |cos(t2 + ai)| + ϵi,

for some ai ∈ R and ϵi > 0, for i = 1, 2. The positive constants
L̄1, L̄2, C̄1, C̄2 represent the inverter inductance and capacitance

values. Irrespective of the load function gi, stability of this inverter
model requires constantly switching between modes σ (t) = 1
and σ (t) = 2, and imposing additional restrictions on the time
spent in mode 2 (De Nicoló, Haimovich, & Middleton, 2016). Let
S denote the set of switching signals σ : R≥0 → {1, 2} where
each mode has minimum (dmin) and maximum (dmax) dwell-times
satisfying 0 < dmin < dmax < π

√
L̄1C̄1. Following the steps in Ex-

ample 4.1 of Mancilla-Aguilar et al. (2017), this switched system
can be shown to be ISS (uniformly) w.r.t. S (as per Definition 4.1
in Mancilla-Aguilar et al. (2017)) by means of the weak quadratic
Lyapunov-type function V (x) =

1
2x

′Px.
We next pose this switched system as a family of parametrized

systems, as explained in Section 2.3. Hence, we take S as the set
of parameters and for every σ ∈ S define fσ : R≥0×R4

×R → R4

via (3). The family

ẋ(t) = fσ (t, x(t), u(t)), σ ∈ S (34)

thus defined is an equivalent formulation of the original switched
system and is then ISS, according to Definition 2.4.

4.2. SQZ-source inverter under input perturbations

Let the input voltage u be decomposed as u = u0 + ∆u,
where u0 is the (possibly time-varying) nominal input voltage and
∆u(t) is a perturbation, expressed as the output of a time-varying
system with inputs v:

ż(t) = g(t, z(t), v(t)), (35)

∆u(t) = h(t, z(t)), (36)

with g : R≥0 × Rk
× Rl

→ Rk and h : R≥0 × Rk
→ R. Let the

function g satisfy g(t, 0, 0) = 0 for all t ≥ 0 and Assumption 1,
and let h be measurable in t , locally Lipschitz in z uniformly in
t ≥ 0, and satisfy h(t, 0) = 0 for all t ≥ 0. Consider the cascade
connection of (35)–(36) with (34) through u = u0 + ∆u. The
resulting connection can be expressed as a family of systems with
state x := col[x, z], input w := col[u0, v], and equation

ẋ(t) = fσ (t, x(t),w(t)), σ ∈ S, (37)

with fσ = col[f 1σ , f 2σ ] and

f 1σ (t, x,w) := fσ (t, x, u0 + h(t, z)), (38)

f 2σ (t, x,w) := g(t, z, v). (39)

We would like to know whether (37) is iISS, since this would
mean that the state x cannot diverge even under specific un-
bounded nominal and perturbation inputs, whose energy is finite
when measured according to an iISS gain.

We stress that finding an iISS-Lyapunov function for (37) is
an extremely hard task. To see why this is so, suppose that V :

R≥0×Rn+k
×Λ → R≥0 is an iISS-Lyapunov function for (37). Then,

V1(t, x, σ ) := V (t, col[x, 0], σ ) must be an iISS-Lyapunov function
for the family (1) with fλ defined as explained. The function
V1(t, x, σ ) cannot depend only on the values of the switching
signals σ , i.e. V1 cannot be of the simple form V1(t, x, σ ) =

W (t, x, σ (t)) for some function W : R≥0 × Rn
× {1, 2} → R.

In fact, since V1 has to be differentiable at any t ≥ 0 and the
switching signal σ may have a jump at any arbitrary time t ≥ 0,
then W cannot depend on the third variable. Then, W (t, x, i) ≡

W̄ (t, x) for some differentiable function W̄ . In this case, W̄ has
to be a strict Lyapunov function for the zero-input subsystems
ẋ(t) = fsw(t, x(t), 0, 1) and ẋ(t) = fsw(t, x(t), 0, 2). However,
each of these subsystems is stable but not asymptotically. As
a consequence, there is no hope in finding an iISS-Lyapunov
function V for the family (37) having a simple dependency on
the switching signals σ in S. This causes the computation of an
iISS-Lyapunov function to be extremely complicated.



4.3. iISS of the SQZ-source inverter

Next, we show that there exists χ̂ ∈ K∞ such that (37) is
iISS with w as the input and L1loc,χ̂ (R

1+l) as the set of admissible
inputs, provided that the time-varying system (35) is ISS. First,
we note that the family of systems

ẋ(t) = fσ (t, x(t), u0(t) + h(t, z(t))), σ ∈ S, (40)

is ISS if one considers col[z, u0, v] as input. In fact, since the
parametrized family

ẋ(t) = fσ (t, x(t), u(t)), σ ∈ S, (41)

is ISS as explained above, there exist β1 ∈ KL and ρ1 ∈ K∞

such that for every solution x of (41) corresponding to some
u ∈ L∞

loc(R
m) and to some σ ∈ S , and with initial time t0 ≥ 0,

the estimate

|x(t)| ≤ β1(|x(t0)|, t − t0) + ρ1(∥u[t0,t]∥) ∀t ≥ t0

holds. Then, for every solution x of (40) corresponding to some
col[z, u0, v] ∈ L∞

loc(R
k+1+l) and with initial time t0 ≥ 0, we have

that for all t ≥ t0

|x(t)| ≤ β(|x(t0)|, t − t0) + ρ1(∥(u0 + ν)[t0,t]∥)
≤ β(|x(t0)|, t − t0) + ρ1(∥u0[t0,t]∥ + ∥ν[t0,t]∥),

where we have defined ν(·) = h(·, z(·)) and used the triangle
inequality. Since h(t, 0) = 0 for all t ≥ 0 and h is locally Lipschitz
in z, uniformly in t ≥ 0, it follows that there exists a function
ρ̂ ∈ K∞ such that |h(t, z)| ≤ ρ̂(|z|) for all t ≥ 0 and all z ∈ Rk.
Then ∥ν[t0,t]∥ ≤ ρ̂(∥z[t0,t]∥) and

|x(t)| ≤ β(|x(t0)|, t − t0) + ρ1(∥u0[t0,t]∥ + ρ̂(∥z[t0,t]∥))

≤ β(|x(t0)|, t − t0) + ρ̃1(∥u0[t0,t]∥) + ρ̃2(∥z[t0,t]∥) (42)

for all t ≥ t0. Here we have used the fact that ρ1(a+b) ≤ ρ1(2a)+
ρ1(2b) for all a, b ≥ 0 and defined the class-K∞ functions ρ̃1(s) =

ρ1(2s) and ρ̃2(s) = ρ1(2ρ̂(s)). From (42) it easily follows that the
family of systems (40) is ISS if one considers col[z, u0, v] as input.
The system (35) is ISS with w = col[u0, v] as input since it is
ISS with v as input by assumption, and g does not depend on u0.
To assert that (37) is ISS, we employ the following generalization
of the result for ISS of cascade time-invariant systems given in
Proposition 3.2 of Jiang, Teel, and Praly (1994).

Proposition 4.1. Consider the family of parametrized systems{
ẋ(t) = g1(t, x(t), z(t), w(t), λ)
ż(t) = g2(t, z(t), w(t), λ),

λ ∈ Λ.

If the family of x-subsystems is ISS with col[z, w] as input and the
family of z-subsystems is ISS with w as input, then the family of
systems is ISS with w as input.

Proof. Proposition 4.1 follows from the small-gain theorem
given in Chen and Huang (2005, Thm. 2.1), by considering the
set of constant functions d : R≥0 → Λ as that of admissible
disturbances. In the statement of Theorem 2.1 in Chen and Huang
(2005), the disturbances d(·) take values in some Euclidean space
Rnd and the functions f1(t, x1, v1, u, d) and f2(t, x2, v2, u, d) are
assumed piecewise continuous in t and d, and locally Lipschitz
in (x1, v1, u) and (x2, v2, u), respectively. Nevertheless, the con-
clusions of such a theorem remain valid, with the same proof, if
one assumes constant disturbances taking values in an arbitrary
set Λ and functions f1 and f2 which are, respectively, Lebesgue
measurable in t , locally Lipschitz in x1 and x2 and continuous in
(v1, u) and (v2, u). ■

The existence of χ̂ ∈ K∞ such that the family (37) is iISS with
col[u0, v] as input and L1loc,χ̂ (R

1+l) as the set of admissible inputs
then follows from Theorem 3.3, since the function fσ satisfies
fσ (t, 0, 0) = 0 for all t ≥ 0 and all σ ∈ S , and Assumption 1
with x in place of x and w in place of u.

5. Conclusion

We have provided a proof of the fact that ISS implies iISS, valid
for parametrized families of time-varying systems. The proof
does not employ Lyapunov characterizations of the correspond-
ing stability properties, and hence is valid in settings where
such characterizations do not exist. When particularized to time-
invariant systems, the assumptions required are weaker than
existing ones, since local Lipschitz continuity with respect to the
input variable is not required. We have also shown that, for a
time-varying system, local Lipschitz continuity in all variables is
not sufficient to guarantee that ISS implies iISS. Our results also
show how suitable iISS gains may be constructed based on the
comparison functions that characterize the ISS property and on
bounds on the function defining the system dynamics. Interesting
questions that still remain open are whether ISS may imply
iISS under non-uniqueness of solutions or for specific classes of
infinite-dimensional systems.

Appendix A. Proof of Lemma 3.4

(B1)–(B2) ⇒ (A2)–(A3). That (A3) holds easily follows from
(B1) by taking L2(r, s) := N(r) + O(s), ω := γ̃ and noting that
N and O are nondecreasing functions. It is also easy to see that
(A2) follows from (B2) and Remark 3.5 by considering L1(r, s) :=

L(r)[P(r) + γ (s)].
(A2)–(A3) ⇒ (B1)–(B2). We assume in the following, according

to Remark 3.1, that L1 and L2 in (A2)–(A3) are nondecreasing in
each variable and continuous functions.

For proving (B1), we define for r, s and δ in R≥0

g(r, s, δ) := sup
t≥0,λ∈Λ

|ξ |≤r,|µ1 |≤s
|µ1−µ2 |≤δ

|fλ(t, ξ , µ1) − fλ(t, ξ , µ2)|

We have that g(r, s, δ) ≤ L2(r, s + δ)ω(δ) for all r, s, δ ≥ 0, and
also that

|fλ(t, ξ , µ1) − fλ(t, ξ , µ2)| ≤ g(|ξ |, |µ1| ∧ |µ2|, |µ1 − µ2|)

for all t ≥ 0, ξ ∈ Rn, µ1, µ2 ∈ Rm and all λ ∈ Λ. Since the
function L2 is nondecreasing in each variable,

L2(r, s + δ) ≤ [1 + L2(r, 2r) + L2(s, 2s)][1 + L2(δ, 2δ)].

Defining γ̃ ,N,O : R≥0 → R≥0 via

γ̃ (δ) = [1 + L2(δ, 2δ)]ω(δ), N(r) = 1 + L2(r, 2r)

and

O(s) = L2(s, 2s),

it follows that γ̃ ∈ K∞, that N and O are continuous and
nondecreasing, and that

|fλ(t, ξ , µ1) − fλ(t, ξ , µ2)| ≤

γ̃ (|µ1 − µ2|)
[
N(|ξ |) + O

(
|µ1| ∧ |µ2|

)]
showing that (B1) holds. Analogously, to establish (B2) we define

h(r, s, δ) := sup
t≥0,λ∈Λ

|ξ1 |≤r,|µ|≤s
|ξ1−ξ2 |≤δ

|fλ(t, ξ1, µ) − fλ(t, ξ2, µ)|.

We have h(r, s, δ) ≤ L1(r + δ, s)δ and

|fλ(t, ξ1, µ) − fλ(t, ξ2, µ)| ≤ h(|ξ1| ∧ |ξ2|, |µ|, |ξ1 − ξ2|).



Since L1(·, ·) is nondecreasing in each variable, then

L1(r + δ, s) ≤ [1 + L1(2δ, δ)][1 + L1(2r, r) + L1(2s, s)].

Defining η, γ , P : R≥0 → R≥0 via

η(δ) = [1 + L1(2δ, δ)]δ, γ (s) = L1(2s, s) − L1(0, 0) + s

and

P(r) = 1 + L1(0, 0) + L1(2r, r),

it follows that η, γ ∈ K∞ and P is continuous and nondecreasing.
It is clear that η satisfies (15) and that (B2) is satisfied. ■

Appendix B. Proof of Lemma 3.6

Consider η, γ , γ̃ , N , O and P as in (B1)–(B2) of Lemma 3.4, and
arbitrary t ≥ 0, ξ ∈ Rn, µ ∈ Rm and λ ∈ Γ . Taking into account
the fact that fλ(t, 0, 0) = 0 and Lemma 3.4, we have that

|fλ(t, ξ , µ)| = |fλ(t, ξ , µ) − fλ(t, 0, 0)|
≤ |fλ(t, ξ , µ) − fλ(t, ξ , 0)|

+ |fλ(t, ξ , 0) − fλ(t, 0, 0)|
≤ [N(|ξ |) + O(0)]γ̃ (|µ|) + P(0)η(|ξ |)

≤ N̂(|ξ |)[1 + γ̃ (|µ|)] (B.1)

where we have defined N̂(s) = max{P(0)η(s),O(0) + N(s), 1} for
all s ≥ 0. Since N̂ is nondecreasing, then item (i) follows.

Let χ ∈ K∞ be such that χ ≥ max{γ , γ̃ }. Let u ∈ L1loc,χ (R
m)

and λ ∈ Λ, and consider fu,λ(t, ξ ) = fλ(t, ξ , u(t)). First, note that
for any interval I ⊂ R≥0, then uI ∈ L1loc,χ (R

m) and hence item (a)
of Definition 2.2 is satisfied. Next, from (A3) in Assumption 1, it
follows that fλ(t, ξ , µ) is continuous in µ. From the latter conti-
nuity and the fact that u(·) is Lebesgue measurable, jointly with
(A1), it follows that fu,λ(t, ξ ) is Lebesgue measurable in t . From
(A2) it straightforwardly follows that fu,λ(t, ξ ) is continuous in ξ .
Since χ ≥ max{γ , γ̃ } and u ∈ L1loc,χ (R

m), then both γ (|u(·)|) and
γ̃ (|u(·)|) are locally integrable. Let t2 ≥ t1 ≥ 0 and r ≥ 0. From
(B.1) and (B2) in Lemma 3.4, we have that for all t1 ≤ t ≤ t2 and
all ξ1, ξ2 ∈ Bn

r , |fu,λ(t, ξ1)| ≤ k1(t) and |fu,λ(t, ξ1) − fu,λ(t, ξ2)| ≤

k2(t)|ξ1 − ξ2|, with k1(t) = N̂(r)[1 + γ̃ (|u(t)|)], and k2(t) =

L(r)[P(r) + γ (|u(t)|)] and L(·) as in Remark 3.5. Therefore, fu,λ
satisfies the standard Carathéodory conditions for existence and
uniqueness of solutions of ordinary differential equations (see
Theorem I.5.3 in Hale (1980)) and hence item (b) of Definition 2.2
is satisfied. Last, item (c) of Definition 2.2 follows because, since
χ ∈ K∞, any locally essentially bounded input u makes χ (|u(·)|)
locally integrable, and hence L∞

loc(R
m) ⊂ L1loc,χ . ■

Appendix C. Proof of Lemma 3.11

Define ḡ2 : R≥0 → R≥0 via

ḡ2(s) = s + sup
0≤t≤s

g2(t).

Note that ḡ2 is continuous, strictly increasing and unbounded.
Therefore, ḡ2 has an inverse, defined over the interval [g2(0), ∞).
Define c := max{1, g2(0)} and a := ḡ−1

2 (c). Let φ : R≥0 → R≥0 be
defined via

φ(s) = ḡ2(s + a) − ḡ2(a) = ḡ2(s + a) − c,

and note that φ ∈ K∞, and that

φ(s) + c = ḡ2(s + a) ≥ ḡ2(s).

Define ḡ1 : [c, ∞) → R>0 as

ḡ1(r) = sup
c≤t≤r

g1(t),

and note that ḡ1 is nondecreasing. Define κ ∈ K∞ via

κ(r) :=

{
rḡ1(c) if 0 ≤ r < c,
rḡ1(r) if r ≥ c.

We thus have, for r ≥ φ(s) + c ≥ c ,

κ(r) = rḡ1(r) ≥ [φ(s) + c]g1(r) ≥ ḡ2(s)g1(r) ≥ g2(s)g1(r).

This concludes the proof. ■
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