
1 Introduction
In the last decades, digital development has drastically changed the methodology of
biomedical data analysis (Peek et al. [2014], Bellazzi et al. [2011]). On one hand, an
extended availability of specific software has brought ease to the formerly tedious
work of data entry for health records (Doukas et al. [2010]). Also, computers and
servers today are capable of storing databases with a great number of features. Even
if these variables are not relevant at the time of data collection, their values may help
to explain odd or abnormal responses. (Koh et al. [2011])

Furthermore, developments in computational power and algorithm efficiency
provide answers to research questions that decades ago would have been too expen-
sive to solve from a financial, temporal and computational point of view. Nowadays,
these questions can be researched and draw new conclusions at a considerably re-
duced expense (Hansen et al. [2014], Yoo et al. [2012]).

Given these issues, healthcare professionals can analyze follow-up data of a
number of subjects with the same condition, and search for population and individ-
ual patterns (Cowie et al. [2017], Lau et al. [2012]) corresponding to a variable of
interest (noted a response variable or outcome). Follow-up data are naturally longi-
tudinal, and due to correlation between repeated measures (noted as measurement
occasions), any statistical procedure that requires independent observations should
be avoided to gain precision.

Longitudinal studies are often confused with time series. However, the main
difference is that longitudinal studies have few measurement occasions compared
to the number of subjects, whereas time series have few subjects with many ob-
servations per individual. This difference is crucial because the mathematical and
statistical tools used for each discipline can be very different (Fitzmaurice et al.
[2012]).

A frequent problem in longitudinal data analysis is that there is usually poor
compliance regarding the study due to difficulties in measuring different subjects
at exactly the same time or getting the subject to participate until the study is fin-
ished. This yields some missing values in the data, which is difficult to assess with
verifiable assumptions (Newman [2003]).

For this reason, longitudinal data are usually unbalanced over time, mean-
ing that not all responses are measured at the same time and not all subjects have
the same number of measurements. Balanced longitudinal data are more common
on experimental studies with strict protocols, and even in those cases, failure to
completely collect the stipulated data is not a rare issue, whereas in observational
studies it is almost a certain event.

A frequent characteristic of biomedical databases, is a high between-subject
variability, since individuals usually respond differently in similar situations. More-



over, in longitudinal studies, the same subject is measured repeatedly over time and
there can also be some within-subject variability.

Mixed models are widely accepted to analyze longitudinal data (Zhang and
Davidian [2001]), since these models contemplate all individual and population
response variability to attain a typical response for each individual, according to
structures in the population response. The fitted values given by this model adapt
to the heterogeneity in the data when well specified. This is possible because these
models have individual random effects that can be fitted and interpreted. For exam-
ple, a random intercept represents the individual baseline response (i.e., the indivual
response at time zero) and a random slope denotes an individual growth rate of the
outcome values over time.

Because of the heterogeneity of the data, it can be very difficult to answer
some longitudinal research questions at a population level. That is why a natural
approach is to find individuals whose response trajectory (the set of response vari-
ables of the same subject over time) is different from what is expected according
to the population structure in the response variable. The difference in the response
trajectory from these subjects can suggest the presence of a confounding variable
not contemplated in the model, possibly leading to a new discovery (Suling and
Pigeot [2012], Chawla and Davis [2013]).

Searching for these abnormal trajectories is essentially an unsupervised de-
tection problem. The unsupervised nature is based on the fact that given a database,
there is no data ascertaining the abnormality in the response trajectory. This lack of
information poses enormous difficulty in the detection process, since the abnormal
events are rare by definition and usually the details that differentiates the event are
not always present.

This detection task has been extensively studied in the literature and can be
found with several names: novelty detection, anomaly detection, outlier detection,
fraud detection, depending on the area of application. Furthermore, Chandola et al.
[2009] classifies three different types of anomalies: point anomalies, contextual
anomalies and collective anomalies. The first category refers to single observations
with values that are far away from the rest. The second category describes an ob-
servation that does not necessarily have an extreme value respect to others, but the
value is far from the expected for a given context. Also, the last category applies to
groups of observations that do not behave according to the majority of the dataset.

A common characteristic of large and high-dimensional data is that there is
usually no prior knowledge regarding quantifiable relationships between variables.
Thus, most outlier detection techniques described in the literature have minimal
assumptions.

Some methods establish an outlier based on the density of near observations,
by considering the distance between each observation and the rest and determining



the fraction of points exceeding a certain distance. If this proportion is high, the
corresponding observation is far away from the rest of the data and can be labeled as
an outlier. Conversely, if the number of observations in a certain neighbourhood is
low, the same conclusion can be attained (Schubert et al. [2014]). Also, the decision
can be based on the distance to the k-nearest neighbour (Ramaswamy et al. [2000]).
However, in the corresponding research area, the Local Outlier Factor (LOF) is
usually applied (Breunig et al. [2000]). Cluster-based methods function in a similar
way. Objects that are not covered by a sufficient number of clusters or distant from
all cluster centers are considered as outliers (Ester et al. [1996]).

Also, these approaches have univariate and multivariate options, the latter
is mainly based on the Mahalanobis distance, which requires an estimation of the
mean vector and covariance matrix (Rousseeuw and Van Zomeren [1990], Billor
et al. [2000]). However, these estimations are dependent on distributional assump-
tions and are very susceptible to outliers and may fail to provide satisfactory results.

Furthermore, principal components analysis provide orthogonal linear com-
binations of variables that better explain the variance in the data, allowing to repre-
sent in few dimensions the majority of data points. However, a linear a combination
of variables does not always have a direct interpretation, difficulting conclusions re-
garding specific variables.

These methods are effective to detect, based on a distance function, points
or groups of points that are far away from the majority of the data. However, these
observations can be considered normal depending on the interpretation of the data
at the population level. Therefore, an addition of context can add a different per-
spective to a possible detection (Kriegel et al. [2008], Delannay et al. [2008]).

Another important issue is that these models require the same number of
coordinates per observation, and therefore, complete data. Thus, if a certain subject
has missing observations, the entire response trajectory (the set of responses for
each subject) should be dismissed.

In some medical applications there is enough prior information on the vari-
ables of interest in order to propose a satisfactory statistical model for the data. A
frequent approach is to assume that “normal” data follows this model, whereas data
that differ from the predicted values exceeding a certain threshold is considered as
abnormal. This approach is called semi-supervised learning, since the labelling of
normal and abnormal data are based on the corresponding model, even if there is
no certainty regarding abnormalities.

For fixed linear regression, many results use this approach. However, the
major issue is in the estimation of parameters, since the presence of outliers can
seriously influence these values, leading to masking and swamping effects. The
masking effect occurs when a method fails to detect an outlier as such by affecting
the fitted values. Conversely, under the swamping effect, an algorithm labels as



an outlier a normal observation, due to the change in the parameter values. There-
fore, most outlier detection algorithms require robust parameter estimates, which
are more time-consuming and usually require specific designs for a given applica-
tion (Hardin and Rocke [2004], Leroy and Rousseeuw [1987]).

The boundaries used to classify extreme data can be based on a fixed dis-
tance between an expected value and the observed value, but can also rely on differ-
ent dispersion measures of the residual values. Davies and Gather [1993] perform
a detailed analysis of outlier identification for univariate data, assuming a gaussian
distribution and based on two dispersion measures, the Standard Deviation and the
Median Absolute Deviation (MAD). Sim et al. [2005] extend the work of Davies et
al. to asymmetric distributions using use the Boxplot rule, based on the interquartile
range (IQR).

Also, many papers have dealt with outlier detection in time series: Abraham
and Box [1979], Fox [1972], Bianco et al. [2001], Roberts [2000], Lin et al. [2005],
Tsay et al. [2000]. However, based on the aforementioned reasons, most of the
corresponding methods are not applicable to a longitudinal setting.

Regarding mixed models, the literature usually focuses on the detection of
subjects that influence the parameter estimates. However, an influential subject or
observation does not necessarily mean that the corresponding response is abnormal.

Taking these issues into account, this work proposes using mixed effects
models to identify abnormalities in a response trajectory. The proposal is based on
the following advantages: first of all, high residual errors represent abrupt changes
in the response values at a given time. This can be seen as in Chandola et al. [2009]
as a contextual anomaly.

On the other hand, individuals with extreme random coefficients correspond
to response trajectories morphologically similar to the population structure but with
a distinct temporal evolution, depending on the interpretation of the coefficient. For
example, an extreme random intercept denotes an abnormal baseline response and
an extreme random slope equals to a different growth rate. According to Chandola
et al. [2009] these are collective anomalies.

Moreover, these conceptually different notions of abnormal trajectories (con-
textual and collective) can be identified simultaneously using mixed models. This
perspective is addressed in Zewotir and Galpin [2007], where the authors establish
a constant threshold for extreme residual detection and identify extreme random ef-
fects using a standarization based on the estimated variance of each random effect.

Figure 1 allows to visualize the aforementioned anomalies. An anomaly will
differ noticeably from a reference value, given by either the expected individual be-
haviour (extreme residual) or the expected population behaviour (extreme random
intercept or slope). The response trajectories of this group of subjects have similar
behaviour. The subject with an extreme residual has a trend over time consistent



with the population response except for a certain timepoint. The subject with an
extreme random intercept has a response growth similar to the population, but start-
ing from a higher value. Also, the subject with an extreme random slope shows a
decrease in the response value, whereas the rest of the population is increasing their
value.

Figure 1: Examples of different anomalies.

The paper is organized as follows: Section 2.1 starts with some mathemat-
ical definitions regarding mixed effect models, followed by a description of the
proposed algorithms in Section 2.2. Also, other methods introduced for the sake
of comparison are described in Section 2.2.3. Details regarding the simulations are
presented in Section 3, Section 3.1 presents the reference mixed model, Section 3.2
describes how abnormalities are included, Section 3.3 sets the parameter values for
the simulations. Section 3.4 explains how missing data is introduced in a reference
database and 3.5 and the proposed measures used to evaluate the performance of
the algorithm are given in Section 3.5 outlines the measures used to evaluate the
performance of the algorithm. The simulation results are presented in Section 3.6
and a comment regarding the influence of sample size is detailed in Section 3.8. The
algorithm was tested in real databases described in Section 4 and the corresponding
results are presented in Section 4.4. Finally, a discussion of the results is developed
in Section 5.



2 Materials and methods
In the current section, the individuals considered in a study will be noted with index
i (1 ≤ i ≤ N), each of which has ni repeated measurements and the index j will
describe each measurement occasion (1 ≤ j ≤ ni), yielding a total of NT = ∑

N
i=1 ni

observations. Also, we use Rn×m as the set of matrices with n rows and m columns.
Another used notation is IIIn denoting the n×n identity matrix. Matrices and vectors
are noted in bold font.

The letter YYY is used to refer to the response variable. For example, Yi j repre-
sents the response variable for subject number i at measurement occasion j, whereas
YYY i ∈ Rni×1 is a vector containing all response measurements for subject number i,
also called a response trajectory.

For simplicity, many equations will be expressed only in terms of index
i, taking into account all repeated measures of a given subject, but assuming the
equation as extensive to all N individuals.

2.1 Mixed Effect Models

A mixed effect model includes both fixed and random effects in the response vari-
able. In matrix notation, fixed effects are usually defined with greek letter βββ as
a p× 1 vector with a corresponding design matrix XXX i ∈ Rni×p, whereas random
effects for subject number i is noted as bbbi ∈ Rq×1 with a design matrix given by
ZZZi ∈ Rni×q.

Using these definitions, linear mixed effects models have the following ma-
trix formulation:

YYY i = XXX i×βββ +ZZZi×bbbiii + εεε i (1)

where εεε i ∈ Rni×1 represents the vector of measurement errors.
When applied to longitudinal databases, at least one of the columns of XXX i

represents a time-dependent variable that allows the identification of temporally
ordered measures for the same subject. This condition usually also applies to ZZZi.

The model assumes independent multivariate normal distributions for bbbi and
εεε i. Namely,{

bbbi ∼ Nq(000;GGG)
εεε i ∼ Nni(000;σ2IIIni)

}
⇒
{

E[YYY i] = XXX i×βββ

V [YYY i] = ZZZi×GGG×ZZZ′i +σ2IIIni

}
(2)

where GGG is a symmetric positive definite q× q matrix and 000 represents the null
vector of the corresponding vector space. However, in practice, the model usually
preforms well even when these assumptions are not totally met (see Verbeke and
Lesaffre [1997]).



When these models are well specified, they are able to fit accordingly to
between-subject variability via the random effects bbbi, without the use of one pa-
rameter per subject. This is because each of the individual vectors bbbi is realization
of the multivariate normal with zero mean and covariance matrix GGG common to all
individuals which has an upper bound of q(q+1)

2 different values. Depending on the
number of covariates associated with the random effects, the parameters involved
can be considerably less than the N parameters that would be used by considering
individual dummy variables (this number can increase if more than one parameter
per individual is involved). However, the cost of parameter reduction is associated
with a probabilistic structure imposed over the random effects that may not be valid.

Also, as it was mentioned before, longitudinal data usually exhibit a positive
correlation between the repeated measures of a subject. The introduction of random
effects in a model, induces a correlation between different measures of the same
individual. Therefore, this issue is also contemplated by mixed models.

Furthermore, if the temporal variable considered is a continuous measure of
time, it can adapt to missing values and unbalanced data, by adjusting a temporal
structure that does not contemplate the specific time point with missing data.

Once the model is fitted, and β̂ββ , σ̂ and ĜGG are estimated, a marginal or pop-

ulation response can be calculated as ŶYY 000
i = XXX i× β̂ββ . Also, the individual random

coefficients bbbi can be fitted using the empirical best linear unbiased predictor (Em-
pirical BLUP) given by:

b̂bbi = ĜGGZZZ′iĤHH
−1
i (YYY i−XXX iβ̂ββ )

ĤHH i = ZZZiĜGGZZZ′i + σ̂2IIIni

(3)

After obtaining b̂bbi, a fitted individual response trajectory for subject i is
given by

ŶYY i = XXX i× β̂ββ +ZZZi× b̂bbi. (4)

This yields a residual vector denoted rrri = YYY i− ŶYY i ∈ Rni×1. If some value ri j (1 ≤
j ≤ ni) is considered extreme (far away from zero), it means that the response for
subject number i at measurement occasion number j has a peak in the response
trajectory. This event can be identified in order to examine the reasons for such
abrupt change in the response.

Assuming a statistical model for the data, a regular observation is consid-
ered to follow a certain distribution F , whereas anomalies or outliers are supposed
to follow a different distribution Fc and therefore, generate abnormal data in an out-
lying region (Davies and Gather [1993]). A possible structure for observations from
distribution Fc (also called contaminants) consists of the addition of a constant to



values from distribution F . This model for the outliers is called a mean shift outlier
model (MSOM).

In this case, a regular observation Yi, j is expected to follow a normal distri-
bution with mean (XXX i×βββ ) j and standard deviation (ZZZi×GGG×ZZZ′i) j, j, whereas for an
outlying observation Yi, j, the MSOM assumes that for a constant δ , Yi, j is consid-
ered to be following a normal distribution with mean (XXX i×βββ ) j + δ and standard
deviation (ZZZi×GGG×ZZZ′i) j, j.

Given these definitions, Figure 2 revisits the data from Figure 1 identifying
the empirical response YYY i, the fitted individual response ŶYY i and the marginal or

population response ŶYY 000
i . The subject with an extreme residual shows similar values

to the fitted response except for a certain timepoint. The difference in the subjects
with extreme random effects appears mainly between the empirical response and
the marginal response.

Figure 2: Depiction of how the different anomaly types are visualized and the
corresponding behaviour of the fitted responses.

Especifying results from Zewotir and Galpin [2007], using the block struc-
ture of the matrices relative to longitudinal data, the residuals can be standardized
calculating the corresponding covariance matrix:

rrri = RRRi×YYY i

RRRi = HHH−1
i −HHH−1

i ×XXX i×
(
∑

N
k=1 XXX ′k×HHH−1

k ×XXXk
)−1×XXX ′i×HHH−1

i
rrri ∼ Nni

(
000;σ2 ·RRRi

)
⇒V (ri j) = (RRRi) j, j

(5)



Therefore, the residual vectors can be standardized as follows:

ti j =
ri j

σ̂ ·
√
(RRRi) j, j

(6)

Furthermore, the predicted residuals (excluding observation j of subject i in
the estimation of σ ) can also be analyzed:

t∗i j =
ri j

σ̂(i, j)·
√

(RRRi) j, j

σ̂2
(i, j) = σ̂2 ·

(
NT−t2

i j
NT−1

) (7)

Verbeke and Molenberghs [2000] apply the calculations in Zewotir and
Galpin [2007] to longitudinal data. According to this work the random effects fol-
low a distribution with a specific covariance structure:

b̂bbi ∼ Nq(000;GGG×ZZZ′i×RRRi×ZZZi×GGG) (8)

Thus, b̂bbih (the estimated random effect number h for subject number i, where
1≤ h≤ q) can be standarized as follows:

v̂ih =
b̂ih√

(ĜGG×ZZZ′i×RRRi×ZZZi× ĜGG)h,h

(9)

These calculations were individualized according to each subject i. How-
ever, these definitions can be extended to the entire population, omitting the sub-
script i. For example, YYY = (YYY 1,YYY 2, · · · ,YYY N) is the NT × 1 vector including all tra-
jectory responses, matrix XXX ∈ RNT×p represents the individual design matrices XXX i
binded by rows, whereas the sparse matrix ZZZ ∈ RNT×(Nq) has a block structure with
ZZZi disposed diagonally. Also, the residual vectors rrr and ttt (standarized) have NT ×1
coordinates, whereas the estimated random effect matrices BBB and VVV (standarized)
have N rows and q columns. BBB and VVV bind by rows the N vectors of q estimated
individual random effects b̂bbi and v̂vvi, respectively.

2.2 Algorithm

The algorithm that we propose next was implemented in R software, since this pro-
gramming language provides an easy management of databases and handles models
involving categorical data very well. The algorithm is divided according to each de-
tection task, given by Algorithm 1 and Algorithm 2, shown in Sections 2.2.1 and
2.2.2, respectively.



Algorithm 1 Extreme Residual Detection Algorithm
1: procedure RESIDUAL DETECTION(Data, Resp, Covs, Rands, ID, TP)
2: NetData←FilterMissingData(Data,Resp,Covs,Rands, ID)
3: Y← NetData(Resp)
4: NRows← Length(Y)
5: X←DesignMatrix(Covs,NetData)
6: Z←DesignMatrix(Rands,NetData, ID)
7: Model←FitMixedModel(Y,X,Z)
8: Res←Residuals(Model)
9: LP = Q1(Res)−TP · IQR(Res)

10: UP = Q3(Res)+TP · IQR(Res)
11: ListRes← /0
12: k← 1.
13: loop:
14: while k ≤ NRows do
15: Aux← (ID(k),Time(k))
16: if Res(k)< LP then
17: ListRes←Append(ListRes,Aux)
18: else if Res(k)> UP then
19: ListRes←Append(ListRes,Aux)
20: k← k+1.
21: go to loop.

return ListRes

The algorithms’ variables, inputs and outputs are noted in italic font. For
example, Res, defined in Algorithm 1.

The algorithm input is given by the database Data, the name response vari-
able Resp, a vector of strings Covs containing the predictive variable names, a vec-
tor of strings Rands containing the names of the variables associated to the random
effects, the subject identification variable name ID, two threshold values TP and TR.

2.2.1 Extreme residuals

Based on these parameters, the algorithm only excludes the records that have miss-
ing data regarding the variables considered in the mixed model. Afterwards, it fits
the model (following equation (1), named “FitMixedModel” in Algorithm 1) esti-
mating the fixed coefficients β̂ββ , the residual standard error σ̂ and the random effects



covariance matrix ĜGG. Based on these estimations it is possible to obtain the individ-
ual random effects b̂bbi, the fitted response trajectories ŶYY i (for observations without
missing covariates) and the residuals rrri.

The first detection task (Algorithm 1) constructs two boundaries based on
the residual vector Res, using the corresponding first quartile (Q1(Res)), the third
quartile (Q3(Res)), the respective interquartile range (IQR(Res)) and the threshold
value TP given as input.

Residual values under LP or over UP are considered extreme and the respec-
tive ID and measurement time is stored in a list.

Obviously, a higher value for TP yields a more restrictive threshold for de-
tecting outliers, whereas low values will tend to detect more data as abnormal.

2.2.2 Extreme Random Effects

In a similar way, naming q the number of random effects, Algorithm 2 takes the
mixed model (noted as Model) fitted in Algorithm 1 as an input. Afterwards, calcu-
lates the matrix of estimated random effects BBB∈ RN×q (one row per subject and one
column per random effect). Each column of BBB is named as BBBh ∈ RN×1, 1≤ h≤ q in
Algorithm 2. Also, BBBh(i) refers to the estimated random effect number h for subject
number i.

Using all these definitions, the second detection task (Algorithm 2), con-
structs q different ranges of “normal” values for the respective random effect. An
estimated random effect BBBh(i) (1≤ i≤ N, 1≤ h≤ q) will be considered extreme if
the value is not between Lh and Uh. Also, the respective ID, the name of the variable
corresponding to random effect number h (VarName), the value BBBh(i) (given by Val
in Algorithm 2) is stored in a list.

The major difference between both tasks is that the former detects specific
times of a response trajectory and the latter procedure detects entire response tra-
jectories with extreme random effects values. Since the number of individuals (and
thus, the number of response trajectories) is given by N and the total number of ob-
servations is NT = ∑

N
i=1 ni (much larger than N), any diagnostics measure involving

the second detection task is more susceptible to errors than the first one.

2.2.3 Comparisons with other thresholding methods

As mentioned in Section 1, other dispersion measures can be used to define the
range of “normal” data. One is the well known Standard Deviation (denoted SD in
this work) and the more robust Median Absolute Deviation (MAD). Given a data



Algorithm 2 Extreme Random Effects Detection Algorithm
1: procedure RANDOM EFFECT DETECTION(Data, Resp, Model, ID, TR)
2: Y← Resp
3: B←FitRandomEffects(Model,Y)
4: i← 1
5: h← 1
6: ListRand ← /0
7: loop1:
8: while h≤ q do
9: VarName← Rands(h)

10: Bh =ExtractColumn(B,h)
11: Lh = Q1(Bh)−TR · IQR(Bh)
12: Uh = Q3(Bh)+TR · IQR(Bh)
13: loop2:
14: while i≤ N do
15: Val← Bh(i).
16: if Bh(i)< Lh then
17: Aux← (ID(i),VarName,Val)
18: ListRand ←Append(ListRand,Aux)
19: else if Bh(i)> Uh then
20: Aux← (ID(i),VarName,Val)
21: ListRand ←Append(ListRand,Aux)
22: i← i+1.
23: go to loop2.
24: h← h+1.
25: go to loop1.

return ListRand

vector x = (x1, · · · ,xn), the MAD is calculated based on the median (x̃ =Median(x))
as follows:

MAD(x) = k ·Median{|x1− x̃|, |x2− x̃|, · · · , |xn− x̃|} (10)

where k = 1
Φ−1(0.75) is a scale parameter. In this expression, Φ−1(0.75) represents

the third quartile of a standard normal distribution. This value of k ensures that, for
normal data, MAD(x) is an unbiased estimator of the standard deviation, obtained
by the next equation, given the mean (Mean(x) = x̄):

SD(x) =

√
1

N−1

N

∑
i=1

(xi− x̄)2. (11)



Thus, the algorithms given in the last section can be adapted to these new
boundaries replacing:

Standard deviation:

• Algorithm 1:
LP = Mean(Res)−TP ·SD(Res)

UP = Mean(Res)+TP ·SD(Res)

• Algorithm 2:
Lh = Mean(Bh)−TR ·SD(Bh)

Uh = Mean(Bh)+TR ·SD(Bh)

where Mean(Res) and Mean(Bh) are the means of the residual vector Res
and Bh (the column number h of fitted random effects matrix B) respectively. Also,
SD(Res) and SD(Bh) are noted as the standard deviation of these vectors.

Median Absolute Deviation:

• Algorithm 1:
LP = Med(Res)−TP ·MAD(Res)

UP = Med(Res)+TP ·MAD(Res)

• Algorithm 2:
Lh = Med(Bh)−TR ·MAD(Bh)

Uh = Med(Bh)+TR ·MAD(Bh)

In an analogous way, Med(Res) and Med(Bh) are the medians of the resid-
ual vector rrr and columns BBBh respectively, whereas MAD(Res) and MAD(Bh) are
the Median Absolute Deviation of these vectors.

Remark: There is an issue worth mentioning. Both alternatives described
above are symmetric respective to the measure of central tendency (mean and me-
dian respectively), whereas the first proposal, based on the boxplot rule, allows for
skewness in the range of normal values, since the first and third quartile are not
necessarily equidistant to the median.

Standarizations:
Also, the same thresholds can be applied replacing residual vector Res (math-

ematically defined as rrr) by the standarized (ttt) and predicted residuals (ttt∗). In case
of the estimated random effects, the matrix BBB can be replaced by VVV .

Zewotir and Galpin [2007]:
In their paper, Zewotir and Galpin [2007] propose the following thresholds

for both detection tasks, using the standarized residuals (ttt) and random effects (VVV ):

• Algorithm 1:
LP =−

√
4·NT

NT−p+3

UP =
√

4·NT
NT−p+3

• Algorithm 2:
Lh =−t0.975,DF

Uh = t0.975,DF

Where DF = NT − rank[XXX ZZZ]− 1 and rank[XXX ZZZ] is the rank of matrices XXX
and ZZZ binded by columns. Also, it is worth mentioning that the work does not



focus on missing data and thus, NT is assumed equal to the number of observations.
Therefore, in the event of missing data, NT should be replaced by the number of net
observations NO, and filtering the number of missing values of variables involved
in the mixed model.

3 Simulated databases
To test the algorithm, we simulated data using a simple mixed model, with parame-
ter values and variables that give rise to data with similar morphological character-
istics to those found in clinical follow-up data.

3.1 Parameters and variables

With this goal in mind, a hypothetical study was considered with two groups (Con-
trol and Treatment, for example), with different fixed intercepts and time slopes, all
included in a vector of fixed parameters noted as βββ . Also, a random intercept and
time slope model (bbbi = (bi1,bi2)) was used, with zero mean and a defined covari-
ance matrix GGG. In addition, random measurements errors εi j were added.

βββ = (β1,β2,β3,β4)
bbbi = (bi1,bi2)∼N2(000,GGG)
GGGhl = Cov(bih,bil) (1≤ h, l ≤ 2)
εi j ∼N (0,σ)

(12)

Considering that longitudinal data are usually unbalanced over time, a new
approach was implemented for the construction of time measurements. Given that
the number of measurements are usually not the same for all individuals, a random
number of observation ni (Jmin ≤ ni ≤ Jmax) was assigned to subject number i.

To achieve mistimed measurements, given ni, the measurement occasions
were set as ti j = ∑

j
k=1 τik, where 1 ≤ j ≤ ni and τik are independent exponential

variables of parameter λ = 1.
With all these parameters, each individual fixed effects design matrix XXX i ∈

Rni×4 is built setting the first column to a value of one, the second column is given by
{ti j}1≤ j≤ni . The third and fourth columns of XXX i are identical to the first and second,
respectively, if subject number i belongs to the Treatment group. Otherwise, the
last two columns have a value of zero.

Since the treatment group is not included as a random effect, each matrix
ZZZi ∈ Rni×2 is equal to the the first two columns of XXX i. Once all the matrices and
coefficients are attained, a simulation for each response trajectory YYY i is calculated
following equation (1).



3.2 Abnormalities

In order to include abnormalities to detect in the data, two different deviations DDDP

and DDDR were added to the mixed model. First, DDDP is added to the normal response
trajectory YYY i, where DDDP has non-zero value with probability pP. In order to be
considered a peak, the deviation value should be relative to the variability of the
measurement errors σ . With this in mind, another positive input value uP is consid-
ered as a constant multiplying σ , used as the absolute value of the deviation. The
variable DDDP is built as follows:

U1
i j ∼U (0,1)

U2
i j ∼U (0,1)

Du = uP ·σ

DP
i j =


Du if U1

i j ≤ pP,U2
i j > 0.5

−Du if U1
i j ≤ pP,U2

i j ≤ 0.5
0 otherwise

(13)

In this construction, U1
i j and U2

i j are random numbers of uniform distribution be-
tween 0 and 1.

It is worth noting that, to avoid introducing bias, the sign of DDDP can be
negative or positive in equal proportions.

To test the second detection task, a similar strategy is used only relative to
the variability of each random effect. For example, knowing that

G11 = Cov(bi1,bi1) = Var(bi1), (14)

the random intercept variability is given by
√

G11. To introduce an extreme random
intercept, a variable DDDRI is calculated as in (13), with different values and another
probability of non-zero value pRI . Also, a positive input parameter given by uR
determines the absolute value of deviation DDDRI relative to the dispersion

√
G11:

Du = uR ·
√

G11

DRI
i =


Du if U1

i ≤ pRI,U2
i > 0.5

−Du if U1
i ≤ pRI,U2

i ≤ 0.5
0 otherwise

(15)

Analogous to DDDRI , DDDRS is calculated as in (15) using
√

G22 instead of
√

G11 and
pRS replacing pRI . These values are included in a vector DDDR = (DDDRI,DDDRS) and the
final simulated response for subject number i, given by ỸYY i is calculated as:

ỸYY i = XXX i×βββ +ZZZi×bbbi +DDDP
i +ZZZi×DDDR

i + εεε i (16)

where DDDP
i represents the vector consistent of the ni values of DDDP

i j calculated in Equa-
tion 13 (1≤ j ≤ ni).



In order to appreciate the interaction effect between DDDRI and DDDRS, a unique
value pR = pRI + pRS is given as input of the simulation, and three combinations
are considered:

• pRI = pR, pRS = 0
• pRI = 0, pRS = pR

• pRI = pRS =
pR
2

Also, whenever the notation uR is used, uRI and uRS are considered to be
equal (uR = uRI = uRS). Otherwise, uRI and uRS can be specified with different
values.

3.3 Simulation settings

Three settings were considered in order to evaluate three different detections: ex-
treme residuals, extreme random intercepts and extreme random slopes. Specific
parameter values were considered for each case. However, some parameters were
fixed through all three experiments. Also, the parameters for the simulated longi-
tudinal databases were selected with the aim of resembling biomedical follow-up
data. These values are given in Table 1.

Table 1: Parameter values used for all simulations

β1 1 β2 0.1 β3 −2 β4 −0.2 Jmin 2
G11 0.051 G12 −0.001 G22 0.051 σ 0.25 Jmax 4

Parameter values for extreme residual detection:

pRI : 0, 0.025, 0.05 pRS : 0, 0.025, 0.05 pP : 0.05, 0.1, 0.2, 0.25
uRI : 1, 2 uRS : 1, 2 uP : 3, 4
TRI : 4 TRS : 4 N : 100, 200, 300

Parameter values for extreme random intercept detection:

pP : 0, 0.1, 0.2 pRS : 0, 0.05, 0.1, 0.2 pRI : 0.05, 0.1, 0.2
uP : 1, 2 uRS : 1, 2 uRI : 3, 4
TP : 4 TRS : 4 N : 100, 200, 300



Parameter values for extreme random slope detection:

pP : 0, 0.1, 0.2 pRI : 0, 0.05, 0.1, 0.2 pRS : 0.05, 0.1, 0.2
uP : 1, 2 uRI : 1, 2 uRS : 3, 4
TP : 4 TRI : 4 N : 100, 200, 300

According to Kannan et al. [2015], for normal distributions, the boundaries
LP and UP calculated in Section 2.2 with the IQR (T IQR

P = 1.5) are similar to those
obtained in Section 2.2.3 with the standard deviation and the median absolute de-
viation (T SD

P = T MAD
P = 3). Therefore, in each setting, the comparisons between

these thresholding methods will be made with these values for TP (T IQR
P = 1.5 and

T MAD
P = T SD

P = 3). The respective comparisons in other settings are established
replacing TP by TRI (or TRS), maintaining the same values for the other different
detection tasks.

3.4 Introducing missing data

Longitudinal biomedical data almost certainly have missing data. Different missing
data mechanisms were introduced in the responses of the complete data mentioned
in the first two sections, following the definitions according to Rubin [1976]:

Missing Completely At Random (MCAR):

In this scenario, the assumption is that missing responses are independent of the
observed variables. This case does not introduce bias on estimated values. Keeping
this in mind, the complete responses Yi j were replaced with missing values with
probability pM, yielding a response with missing values Y M

i j , given by:

Ui j ∼U (0,1)

Y M
i j =

{
NA if Ui j ≤ pM
Yi j if Ui j > pM

(17)

Missing At Random (MAR):

In this case, missing responses are only dependent on observed variables. Try-
ing to mantain comparability between different mechanisms, the following crite-
ria was implemented: in order to have a missing response with probability pM,
but dependent of the observed variables in the design matrix XXX (binding by row
all the individual matrices XXX i), Yi j is replaced by a missing value with probabil-
ity p(Xi j1, · · · ,Xi jp), where Xi jk is the covariable number k, for subject number i,



at measurement occassion j. p(Xi j1, · · · ,Xi jp) is attained using weighted sums and
logistic functions:

µk = E[Xi jk], σk = σ [Xi jk]

C =
log
(

pM
1−pM

)
∑

p
k=1

µk
σk

K(Xi j1, · · · ,Xi jp) =C ·∑p
k=1

Xi jk
σk

p(Xi j1, · · · ,Xi jp) =
eK(Xi j1,···,Xi jp)

1+eK(Xi j1,···,Xi jp)

(18)

We note that E[p(Xi j1, · · · ,Xi jp)] = pM. Also, the function K(Xi j1, · · · ,Xi jp)
prioritizes variables with small standard deviations in order to reduce the variability
of p(Xi j1, · · · ,Xi jp). Thus, Y M

i j is attained replacing pM by p(Xi j1, · · · ,Xi jp) in (17).

Not Missing At Random (NMAR):

In this case, missing responses are dependent on the values of the missing responses.
Similar to the MAR proposal, a term was included corresponding to values in Y ,
with mean µY and standard deviation σY . Therefore, the probability of changing Yi j
to a missing value is p(Xi j1, · · · ,Xi jp,Yi j), where the definitions are similar to those
given in (18):

C̃ =
log
(

pM
1−pM

)
µY
σY

+∑
p
k=1

µk
σk

K̃(Xi j1, · · · ,Xi jp,Yi j) = C̃ ·
(

Yi j
σY

+∑
p
k=1

Xi jk
σk

)
p(Xi j1, · · · ,Xi jp,Yi j) =

eK̃(Xi j1,···,Xi jp,Yi j)

1+eK̃(Xi j1,···,Xi jp,Yi j)

(19)

The response with missing values Y M
i j is obtained replacing pM by

p(Xi j1, · · · ,Xi jp,Yi j) in (17).

Dealing with missing data

Most procedures dealing with missing data focus on the missing data pattern, which
can be thought of as an indicator variable Mi j of value 1 if Yi j is observed and
0 otherwise. Assuming structures of zeros and ones in this vector and associated
probabilities can improve the estimation of the population parameters.

In some cases, the patterns can be considered monotone (in which if an
observation is missing for a certain individual, all subsequent observations of the
same individual are missing) or non-monotone (where individuals can have missing
observations but observed responses in a posterior timepoint). The former case only
admits dropouts from the study and this structure allows the use of specific tools



used for the analysis of the missing data patterns, whereas non-monotone missing
data patterns are much more challenging.

Also, most approaches to missing data assume a factorization of the joint
likelihood of vectors YYY and MMM. Depending on the assumptions that can be made,
the missing data pattern MMM does not influence the estimation of population. This
condition is called ignorability and is valid for MCAR and MAR mechanisms, even
if the factorizations of the likelihood are different.

However, under NMAR mechanisms, these assumptions cannot be made,
the missing data pattern is non-ignorable and the joint likelihood can be factor-
ized according to three main approaches: selection models, pattern-mixture models
and shared parameter models (specific for mixed models). Details can be found in
Molenberghs et al. [2014].

All these approaches require many assumptions that can be scientifically
pertinent, but cannot be verified. Furthermore, since many factors can explain miss-
ing data, the assumptions are very specific to the application and the corresponding
study. Moreover, in observational studies, many issues are not under the control
of researchers and thus, a small number of assumptions can be made. This lack of
assumptions often leads researchers to exclude the missing observations and esti-
mate the population parameters dismissing the missing data pattern, at the risk of
possible bias. In this work we focus on this case given the impossibility to apply
these procedures in general databases without prior knowledge.

3.5 Evaluation of the algorithm

For any given data, the main difficulty in evaluating the performance of the algo-
rithm is the lack of a classification variable indicating which of the response trajec-
tories or measurement occasions are outliers. Therefore, it is of paramount impor-
tance to have a reference database in which the detected trajectories are considered
as reliable or “true” detections, comparing it to the test database. The simulated
databases detailed in Section 3, in which abnormalities are introduced artificially,
provide a location and reference for the real abnormalities and the detections can
be compared to these values.

Using the simulated databases described in Sections 3.1 and 3.2 and the
missing data mechanisms described in Section 3.4, Table 2 shows the comparisons
that were considered.

Also, a trajectory or measurement occasion detected as abnormal is consid-
ered a “positive detection”. Thus, considering R+ as a positive detection in the
reference database, and T+ as a positive detection in the test database, a compar-
ision between the same task in both databases, yields the following contingency



Comparison Reference Test
Simulated Database DDDP and DDDR SDB

Simulated + Missing Data DDDP and DDDR SDB w/MD

Table 2: Comparisons used to evaluate the algorithm. The following abbreviations
were used in this table: SDB corresponds a simulated database using ỸYY i (described
in equation 16) as a response variable. Also, MD denotes that missing data was
introduced in the response variable. DDDP and DDDR are defined in Section 3.2.

table:
R+ R−

T+ T P FP
T− FN T N

(20)

where R− and T− are negative detections in the reference and test database, re-
spectively. Furthermore, the values T P represents the number of true positives, and
similarly FP, FN, T N are the number of false positives, false negatives and true
negatives, respectively. Again, the concept of “true” and “false” are those given by
the reference database.

Assesing if the detections in the test databases are “true” or “false” requires
tracking the corresponding information of DDDP and DDDR defined in Section 3.2. For
the residual detection task, the true detections are attained identifying the non-zero
values of DDDP, and retrieving the corresponding ID’s and timepoints in the simulated
database, and comparing them to the detections provided by the algorithm. In a
similar way, the non-zero rows of DDDR correspond to the ID’s with true random
effect detections (where the column number identifies the random effect) and can
be compared to the detections attained in the output of Algorithm 2.

An important remark is that whenever missing data are introduced, there can
be a missing value in the test database in the same location as an object detected
by the reference database. Therefore, if the algorithm does not detect an abnormal
response because it is missing, it is not counted as a “false negative”, since the
algorithm is not capable of detecting such event. The same criteria is applied to the
missing data that were originally negative and missing in the test database, they are
excluded as “true negatives”.

These contingency tables yield some quantitative measures that can be used
to evaluate the performance of the algorithm:

• Sensitivity: T P
T P+FN

• Specificity: T N
FP+T N

• Positive Predictive Value: T P
T P+FP

• Negative Predictive Value: T N
T N+FN



For simplicity, from now on the Positive and Negative Predictive Value will
be referred as PPV and NPV respectively.

The number of positives in both scenarios is usually low compared to the
number of negatives, because the algorithm detects as positive an abnormal behav-
ior. This yields a higher value of T N than all other elements of the contingency
table (all other cases are detected as positive in one of both scenarios). Thus, the
Specificity and NPV are usually close to 1. On the other hand, sensitivity and PPV
can result in a large range of values, since a slight reduction in the numerator can
have a considerable impact in the quotient value.

3.6 Results for simulated databases

In the following section the evaluation of the algorithm in each setting and database
is presented in several tables and graphs. Keeping in mind the importance of posi-
tive detections, the focus is set in the sensitivity and positive predictive value.

Furthermore, if the area of application requires low false negatives the sen-
sitivity may have a higher priority. For example, in medical applications, the cost
of missing a positive detection may result in serious consequences, and the health
professional may prefer a larger number of detections and rely on their experience
to discard false positives.

However, if the PPV is low, the number of false positives is big compared
to the detections, and manually discarding false positives can be overwhelming.
Therefore, a desirable method would require a balance between values of Sensitivity
and PPV.

Another reason why specificity analysis is omitted is that similar results are
obtained with all methods and experiments, usually with very high values. Thus,
the graphs are not very informative.

Also, the thresholding proposed in Zewotir and Galpin [2007] does not de-
tect any extreme residual in our simulation and therefore, does not figure in the
corresponding section.

In all the following sections M = 100 repetitions for each parameter combi-
nation of the experiment were conducted, in order to have a mean value and standard
error to display in the different charts.

Several graphics were used to analyse the results of the detection algorithms
in the simulated databases described in Section 3. Since no noticeable difference
is observed in performance regarding sample size, in this section, the number of
subjects is fixed at N = 100. The sample size analyisis is focused on complexity
and is developed in Section 3.8.



3.6.1 Extreme Residuals

Figure 3 shows the evolution of the mean sensitivity of the ordinary residuals rrr
based on increasing values of pP with fixed values of uP,uRI and uRS and varying
pRI and pRS.

Figure 3: Mean sensitivity and standard error analysis for the residual detection
task, with uP = 4 and uRI = uRS = 1 as fixed values.

In all panels, the IQR method gives a higher sensitivity. The prevalence of
this method in sensitivity analyisis is almost constant throughout the simulations of
residual detections because the IQR method is slightly less restrictive than the other
methods, yielding a higher rate of positive detection.

It is worth noting that the sensitivity of the SD method decreases faster than
the remaining methods, given that the calculation of the standard deviation is more
susceptible to noise.

An unexpected result is that when only random slopes are introduced, the
sensitivity in the IQR method slightly improves, whereas when only random in-
tercepts are included, the sensitivity decreases its value. This can be explained as



follows: an increase in variability of the random slopes affects all timepoints of
the response trajectories, yielding variability in the estimated slopes and therefore,
predictions that are more adaptable to the diversity in the responses and therefore,
providing in some cases better individual estimations for all timepoints. On the
other hand, adding extreme random intercepts to the data only provides estimations
that adapt to the variability in the baseline response.

Figure 4 represents the sensitivity analysis for fixed values of pRI pRS, al-
lowing to visualize the difference for different values of uP,uRI and uRS.

Figure 4: Mean sensitivity and standard error, with pRI = pRS = 0.025 as fixed
values, for the residual detection task.

As expected, higher values of uP give rise to bigger peaks, and thus, result
in higher sensitivity. It is worth noticing that again the IQR method corresponds
to higher sensitivity values. However, there is an unexpected result: keeping uP
constant, an increase in uR should add noise to the model. However, the IQR method
yields a slightly higher sensitivity given this increase. A similar feature is observed
for the MAD method with uP = 4.



The PPV analysis for residual detection is shown in Figure 5, with fixed
values of pRI and pRS and uP.

Figure 5: PPV analysis for the residual detection task, keeping as fixed values pRI =
pRS = 0.025 and uP = 4.

It can be seen in this figure that the SD method yields the highest PPV.
Since the SD method is a little more restrictive, there is a lower tolerance to postive
detection. Therefore, the positive detections are frequently true positives, yielding
a higher PPV in most settings. However, all methods have reasonable PPV values
and the SD method usually has a higher false negative rate.

Also, the values of sensitivity using the ordinary, standarized and predicted
residuals (rrr, ttt and ttt∗, respectively) do not show a noticeable difference.

An observed feature in these figures, is that adding noise to the model has
no significant effect on the sensitivity. For example, in residual detection, adding
extreme random effects (pRI, pRS > 0) and with higher magnitude (greater values
uR = 1 vs. uR = 2) the only difference in changing these parameters is a slightly
higher standard error.

Another noticeable characteristic is that the mean value shows similar mor-
phology and respect a certain order throughout different methods. Keeping this in
mind, the following figures will only show some fixed values for the parameters,
allowing to visualize the main characteristics.

3.6.2 Extreme Random Intercept

Figure 6 (a) and (b) show the sensitivity and PPV analysis, respectively, for random
intercept detection with fixed values of pP, pRS, uP and uR.



(a) (b)

Figure 6: (a) Sensitivity and (b) PPV analysis for the random intercept detection
task, keeping fixed pP = pRS = 0, uP = uRS = 1 and uRI = 4.

Clearly, the thresholding method given by Zewotir and Galpin [2007] yields
the highest sensitivity, but at a cost of a very small PPV (only 20% of the detec-
tions are true positives when pRI = 0.05). The remaining methods have a similar
behaviour to the results from the residual detection task, with the IQR yielding a
higher sensitivity, compared to the MAD and SD methods.

Also, no major differences were observed using the estimated random inter-
cepts (b̂bbi1) and corresponding the standarization (v̂vvi1).

3.6.3 Extreme Random Slope

The results for sensitivity in the random slope detection are shown in Figure 7. The
Zewotir and Galpin [2007] thresholding uses the standarized random slopes (v̂vvi2),
whereas all other methods use the ordinary estimated random slopes (b̂bbi2).

In comparison to Figure 6 (a), all methods improve their sensitivity and
PPV in Figure 7 (a) except for the thresholding proposed in Zewotir and Galpin
[2007]. This feature is explained by the constant thresholding and the proposed
standarization of the estimated random effects, which normalize all random effects
to a single distribution. This improvement compared to the random intercept de-
tection can be explained as follows: an extreme random slope has an impact in all
timepoints of the response trajectory, whereas a random intercept only affects the
baseline, making it harder to detect the impact of the random effect.

Furthermore, the thresholding proposed by Zewotir and Galpin [2007] has a
small PPV value. Another noticeable feature is the fast decay of the sensitivity for



(a) (b)

Figure 7: (a) Sensitivity and (b) PPV analysis, keeping fixed pP = pRI = 0, uP =
uRI = 1 and uRS = 4.

the SD method in comparison to the other methods.
Also, Figure 8 shows how the IQR method performs better using the ordi-

nary random slopes (b̂bbi2), compared to the standarization (v̂vvi2).

(a) (b)

Figure 8: (a) Sensitivity analysis, keeping fixed pRI = pRS = 0, for the random
slope detection task. (b) PPV analysis for the random slope detection task, with
pP = pRS = 0.



3.7 Results for simulated databases with Missing Data

The Missing Data Mechanisms described in Section 3.4 were applied to the Sim-
ulated Databases from the previous section. The analysis was conducted fixing
some parameter values, varying the Missing Data Mechanisms (MCAR, MAR and
NMAR) and pM taking the following values: 0.05, 0.1 and 0.2. The results are
shown in Figures 9 and 10, yielding the sensitivity values corresponding to the
residual detection task, keeping N = 100,uP = 4,uR = 1 and pRI = pRS = 0.

Figure 9: Sensitivity analysis for the residual detection task, under the NMAR miss-
ing mechanism.

Excluding data has an effect on all evaluation measures given in Section
3.5, due to changes in the numerator and denominator. However, the morphological
tendency of the different evaluation measures are similar to those in Section 3.6
with the same parameter values and detection tasks.

An unexpected result that can be seen in Figure 9 is that a higher proportion
of missing values slightly increases the sensitivity.

Also, Figure 10 shows another peculiarity. The sensitivity for the IQR and
MAD method is lower in the MCAR mechanism, which is the most desirable set-
ting, given that it does not introduce bias. It seems that the bias of the MAR and
NMAR is favoring the detection of extreme residuals, even if the peaks are positive
and negative in equal proportions.

Furthermore, for individual random effects detection, an individual is con-
sidered missing if the entire response trajectory is missing. Since this event is less
frequent, there is no discernable difference in these values after introducing missing
data.



Figure 10: Sensitivity analysis for the residual detection task, keeping pM =0.1.

3.8 Sample size

Table 3 shows the results for computing time in microseconds of each thresholding
option. There is a clear computational difference between using ordinary residuals
and random effects, against the corresponding standarizations. This difference can
be explained by the different design matrices and the respective inversions involved
in the standarizations. Given the block structure of design matrices in longitudinal
data, the calculations can be separated per subject. However, the corresponding
dimensionality reduction still requires considerable computing time.

All algorithms seem to evolve proportionally to the sample size, except for
the Zewotir and Galpin [2007] thresholding, which increases faster than the other
methods.

Another issue worth mentioning is that no noticeable differences regarding
sample size are observed in the performance measures detailed in 3.5. Therefore,
the analyisis is omitted from this work to avoid the inclusion of uninformative fig-
ures and tables.

4 Benchmark databases
The proposed algorithms were also tested on several benchmark longitudinal databases.
Some are benchmark databases1 described in Fitzmaurice et al. [2012].

1available in https://content.sph.harvard.edu/fitzmaur/ala2e/



Method Detection Class

IQR

Residuals
Ordinary (rrr)

Standarized (ttt)
Predicted (ttt∗)

Random Intercept Ordinary (BBB)
Standarized (VVV )

Random Slope Ordinary (BBB)
Standarized (VVV )

N=100
123.68(6.652)
800.39(6.83)

798.981(6.914)
117.96(4.79)

793.246(5.144)
130.528(7.727)
803.665(7.971)

N=200
201.999(6.172)
1540.423(6.001)
1542.468(5.414)
198.392(2.111)
1541.703(3.665)
200.202(6.058)
1524.815(6.079)

N=300
304.836(5.004)

2298.749(5.982)
2303.471(5.445)
290.204(4.273)

2285.728(5.288)
286.727(4.165)

2284.487(4.943)

MAD

Residuals
Ordinary (rrr)

Standarized (ttt)
Predicted (ttt∗)

Random Intercept Ordinary (BBB)
Standarized (VVV )

Random Slope Ordinary (BBB)
Standarized (VVV )

123.32(6.688)
801.081(7.072)
800.261(7.22)
117.17(4.747)
794.22(5.773)

129.908(7.717)
805.085(8.209)

196.087(5.055)
1545.474(6.253)
1544.727(5.825)
199.374(2.385)
1548.236(3.852)
198.605(5.902)
1543.607(6.577)

289.112(4.381)
2313.759(5.734)
2316.206(5.727)

287.683(3.9)
2310.719(5.12)
284.058(3.686)

2307.901(5.173)

SD

Residuals
Ordinary (rrr)

Standarized (ttt)
Predicted (ttt∗)

Random Intercept Ordinary (BBB)
Standarized (VVV )

Random Slope Ordinary (BBB)
Standarized (VVV )

123.324(6.644)
798.961(7.501)
800.217(6.836)
116.627(4.716)
795.396(5.858)
129.851(7.688)
807.589(8.283)

195.668(5.127)
1547.536(5.855)
1549.968(5.782)
197.859(2.079)
1542.785(3.578)
198.693(5.879)
1548.965(6.198)

288.259(4.412)
2326.721(5.995)
2319.264(6.356)
286.553(3.901)

2308.299(5.068)
283.707(3.734)

2317.318(5.556)

Zew
Residuals Standarized (ttt)

Random Intercept Standarized (VVV )
Random Slope Standarized (VVV )

824.169(7.106)
817.616(5.238)
829.924(8.372)

1794.68(7.252)
1786.657(4.915)
1809.246(7.23)

3350.533(10.55)
3325.185(8.747)
3345.491(8.43)

Table 3: Mean computing time and standard error (in microseconds) for each
thresholding of the different detection tasks, for different sample sizes

4.1 FEV1 Data

The FEV1 database corresponds to a large longitudinal study (Dockery et al. [1983])
designed to analize evolution of respiratory attributes of children from 6 cities of the
US. The original study had 13.379 enrollments. However, the available data con-
sists of N = 300 female children randomly selected from the study subjects coming
from Topeka (Kansas). The collected attributes are the age of the participant, the
height and the Forced Expiratory Volume during 1 second (noted FEV1, a measure
of pulmonary function). The measurements were repeated annually. However, due
to attrition or mistimed measurements, the data is unbalanced over time.

The response trajectories are shown in Figure 11. Fitzmaurice et al. [2012]
propose the following mixed effects model to represent the responses (FEV1) of
subject number i over time:

log(FEV111,i) = β0 ·1+β1 ·agei +β2 · log(Hti)+β3 ·age0
i ·1+

β4 · log(Ht0
i ) ·1+bi0 ·1+bi1 ·agei + εεε i

(21)

where age0
i and Ht0

i stand for the baseline age and height for subject i, respectively,



Figure 11: Response trajectories for N=300 randomly selected children from the
Six Cities Study, from Topeka (Kansas)

and 1 represents a ni× 1 vector of ones used to account for the same intercept
through repeated measurements. Moreover, β = (β1,β2,β3,β4) represent the fixed
effects coefficients,whereas b0,i and b1,i represent the individual random intercept
and slope respectively for subject i.

4.2 Cholesterol Data

The Cholesterol Data comes from a study (Wei and Lachin [1984]) conducted to
investigate the effects and safety of a drug named chenodiol to treat cholesterol
gallstones applied to 103 patients. Two groups were randomly assigned to treat-
ment or placebo. The response variable (Serum cholesterol, measured in mg/dL)
was measured at baseline and at 6, 12, 20, and 24 months of follow-up. 68 mea-
surements of the study are missing due to various reasons, yielding a total of N=447
responses.

The response trajectories can be seen in Figure 12 and the corresponding
mixed effects model is

Choli = β0 ·1+β1 ·Timei +bi0 ·1+bi1 ·Timei + εεε i (22)



(a) (b)

Figure 12: Response trajectories for subjects of (a) the National Cooperative Gall-
stone Study and (b) the Treatment of Lead-Exposed Children Trial.

4.3 TLC Data

The Treatment of Lead-Exposed Children (TLC) trial (Rogan et al. [2000]) was
a randomized study to analyse the effects of a drug named succimer in children
with similar blood lead levels. These data consist of four repeated measurements of
blood lead levels obtained at baseline (or week 0), week 1, week 4, and week 6 on
100 children, randomly assigned to treatment with succimer or placebo, yielding a
total of N=400 responses.

The response trajectories are shown in Figure 12 and the corresponding
mixed effects model is

Leadi = β0 ·1+β1 ·Timei +β3 ·Trti ·Timei +β4 ·Trti ·Time*i+
bi1 ·Timei +bi2 ·Time*i + εεε i

(23)

where variable Trti counts as a vector of ones if subject i corresponds to the Suc-
cimer group and 0 otherwise. Also, the variable named Time* is defined as:

Time* = max{0;Time−1}, (24)

simbolyzing time elapsed since the first week of the study.



4.4 Performance in Benchmark databases

Table 4 details the number of outliers found by each thresholding method for the
databases described in Section 4. For the thresholding proposed in Zewotir and
Galpin [2007], some values are blank since the method uses only one of the options
for both residual and random effect detections.

Data Detection Class

FEV1

Residuals
Ordinary (rrr)

Standarized (ttt)
Predicted (ttt∗)

Random Effects Ordinary (BBB)
Standarized (VVV )

IQR
39
41
41
22
6

MAD
30
28
28
10
2

SD
25
25
25
4
2

Zew
−
0
−
−

522

Cholesterol
Residuals

Ordinary (rrr)
Standarized (ttt)
Predicted (ttt∗)

Random Effects Ordinary (BBB)
Standarized (VVV )

4
4
14
4
4

0
1

13
3
3

0
1
4
2
2

−
417
−
−
0

TLC
Residuals

Ordinary (rrr)
Standarized (ttt)
Predicted (ttt∗)

Random Effects Ordinary (BBB)
Standarized (VVV )

19
21
23
4
4

19
21
22
6
6

5
6
6
0
0

−
208
−
−
0

Table 4: Number of outliers detected in the Benchmark databases

For the FEV1 data, given each method, there is no difference regarding the
use of ordinary, standarized or predicted residuals. However, the difference is in the
random effect detection, where the standarized random effects yields less detections
than the ordinary random effects. Also, the Zewotir and Galpin [2007] thresholding
does not detect any extreme residuals, yet classifies a great number of random ef-
fects as extreme, given the total number (N×q = 600). Both results are consistent
with those obtained in the simulations, i.e., low PPV in the random effect detection
task.

The opposite situation is observed in both Cholesterol and TLC data: the
standarization of the random effects does not affect the number of detections, whereas
there is a difference regarding ordinary, standarized and predicted residuals. Also,
the Zewotir and Galpin [2007] thresholding yields a great number of residual de-
tections, compared to the number of total observations.

The erratic results for the Zewotir and Galpin [2007] thresholding can be ex-
plained by basing great part of the constant boundaries on the sample size, whereas
the other methods rely on the dispersion of the corresponding vector. The constant



thresholding can be extremely restrictive or tolerant, and does not adapt well to dif-
ferent types of data and thus, the number of detections do not seem reasonable in
these databases.

Furthermore, the differences between FEV1 data and the rest can be ex-
plained by the sample size: FEV1 data has NT = 1993 observations, whereas Choles-
terol and TLC data have NT = 447 and NT = 400 observations, respectively. Re-
garding the difference in the random effect detection in FEV1 data, the same stan-
darization is applied to all random effects without considering possible differences
between them. When the number of estimated random effects is large, considering
the difference between each column of matrix BBB becomes more noticeable. Also,
the smaller sample size in Cholesterol and TLC data allows each observation to
have a greater influence on the estimations. Therefore, removing each observation
for the predicted residual calculation can have a greater impact on the vector.

5 Discussion
A new approach for the simultaneous detection of contextual and collective anoma-
lies was presented. The corresponding approach is based on linear mixed effects
models, and resorts to different dispersion measures described previously in the
literature in other contexts.

The algorithm performs quickly and with a good balance between Sensi-
tivity and PPV applying the IQR method to the ordinary residuals and estimated
random effects. Although the Zewotir and Galpin [2007] thresholding (included
for the sake of comparison) yields a higher sensitivity than the IQR method for the
random effect detection task, the number of false positives is too high for databases
with relatively large sample sizes.

Furthermore, whenever the boundaries are based on a dispersion measure,
such as in the IQR method, the results adapt to the variability of the data at hand.
On the other hand, thresholds mainly established by the sample size can yield too
restrictive or too tolerant cutoff points.

Also, for boundaries that rely on specific calculations for a certain statistical
model, the performance of the corresponding algorithm decreases if the data does
not adjust precisely to the model. Since in real observational data model assump-
tions ususally are not totally met, the IQR method can provide satisfactory results
in these cases.

In addition, different random effects have different influences on the re-
sponse trajectories. Therefore, considering separate detections for each variable
allows to profit from the different interpretations of each random effect, without
recurring to a normalization that applies uniformly to all random coefficients.



Regarding alternatives to some features in this work, we can mention the
following approaches:

The algorithm does not require the value of T = 1.5 for the IQR Method or
T = 3 for the MAD and SD Methods. These tolerance values can be changed to
achieve a better performance of the detection tasks.

For example, the boundaries can be based on the application. The user
may prefer to detect an absolute or percentual difference between the empirical
values and the fitted values. Furthermore, the observations can be ranked according
to their distance to the null value, allowing to manually adjust the percentage of
observations with the highest absolute value to the application’s need.

Moreover, if the users can use their expertise to deem which of the detec-
tions are true or false positives, the algorithm can improve if the false positives
share similar characteristics (suggesting a confounding variable) or the established
boundary was excesively tolerant.

Different methods can be used for each detection task, depending on the
priorities established by the user. Since each detection task has a respective uni-
variate vector with a corresponding interpretation, many of the cluster-based or
density-based methods described in Section 1 can be applied to a residual vector or
a column of the matrix of estimated random effects.

As it was mentioned in Section 1, the Mahalanobis distance does not apply
to vectors of different length, given that there is not a shared covariance matrix
and hence, methods based on this distance could not be applied to the response
trajectories when there are missing observations. However, by using Equation (5)
an individual covariance matrix can be estimated for each response trajectory, and
the Mahalanobis distance can be used. Furthermore, every strategy can be improved
using robust estimates for the parameters, at the cost of an increased computational
complexity.

Modifications in some features in Section 3 can be introduced. For example,
to achieve mistimed measurements, the measurement occasions were determined
using random exponential variables. However, these timepoints can be attained
by using other non-negative random variables such as gamma, weibull or simply
non-negative uniform distributions, instead of exponential variables.

The missing data mechanisms described in 3.4 use weighted sums that guar-
antee equal expected probabilities of obtaining missing values for the proposed
MCAR, MAR and NMAR mechanisms. These weights may take other values as
long as the expected proportion of missing data agrees with a specified probabilty.

The algorithm may improve by adding another step in the estimation of the
individual response. The current algorithm estimates the mixed model parameters
by excluding the missing responses. These prior estimations can be used to per-
form a model-based multiple imputation of the responses and to estimate the model



parameters once more.
For the simulated data with missing responses described in 3.4, the missing

data pattern is known. Therefore, the likelihood-based methods discussed in 3.4
can be applied to improve the estimation of the model parameters with verifiable
hypotheses. With the aim of applying these extensions to real data, the performance
of different thresholding methods can be compared whenever assumptions regard-
ing the pattern of missing values are reasonable.
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