Hexacopter fault tolerant actuator allocation
analysis for optimal thrust

Claudio D. Pose*, Juan 1. Giribet*T and Alejandro S. Ghersin®
* Grupo de Procesamiento de Seiiales, Identificacion y Control (GPSIC)
Departamento de Ingenieria Electrénica, Universidad de Buenos Aires, Argentina
T Instituto Argentino de Matemética - Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Argentina.
¥ Departamento de Ingenieria Electrénica, Instituto Tecnolégico de Buenos Aires (ITBA) and CONICET, Argentina
Email: {cldpose, jgiribet} @fi.uba.ar; aghersin@itba.edu.ar

Abstract—Recently, it was shown that an hexagon shaped hexa-
rotor vehicle with tilted rotors, is capable of fault tolerant attitude
and altitude control. In this work, we propose a strategy to select
the signals commanded to each rotor in order to achieve a desired
torque and vertical force. The proposed strategy is optimal in the
sense that minimizes the maximum force exerted by the rotors.

A comparison with the commonly used strategy based upon
the Moore-Penrose pseudoinverse is carried out. It is shown
that, with the optimal strategy proposed here, maneuverability
is improved, because the new method takes into account the
actuators constraints. Although the optimal strategy is computa-
tionally more demanding than the classical method, the additional
computational burden is not significant when both strategies are
compared in a real application. To show this, both algorithms
were programmed in an autopilot based on an ARM Cortex M3
microcontroller, and the experimental results are presented.

Index Terms—Fault tolerant control, Unmanned aerial vehicle,
Actuator Allocation.

I. INTRODUCTION

Multi-rotor micro aerial vehicles (MAVs) have become very
popular in recent years, due to the fact that the electronic
systems needed to fly them have increased their availability,
through an impressive reduction of cost, size and weight.
Several applications have emerged where MAVs have proved
extremelly useful. As this technology has become more pop-
ular, the number of accidents reported has been increasing. In
this context, fault tolerance becomes a critical issue.

A recent survey on fault tolerant control for multi-rotor
MAVs can be found in [1]. In [2], the study of fault tolerant
controls has been carried out for multi-rotor vehicles with
different number of rotors.

The minimum number of rotors needed to achieve a fault
tolerant control for multi-rotor MAV3s, is an issue that has been
discussed in [3], [4], [5], [6], among others. In [5], a study
on the trade off between number of rotors, maneuverability,
efficiency and redundancy is carried out. As it is shown in
these works, in the case of failure on a rotor, an hexagon
shaped hexarotor without its motors tilted (see Fig. 1), will
see its performance degraded, due to the fact that the attitude
controller will be unable to reject disturbance torques in certain
directions. This means that this kind of vehicle is not fault
tolerant.

There are some known solutions to the full controllability
problem for fault tolerant multirotors. The octocopter solution

[7] requires more actuators, increasing the mechanical redun-
dancy; other mechanical designs make use of servomotors in
order to change the position and orientation of the motors [8];
bidirectional rotating motors are proposed as well [5], with the
disadvantage of generating thrust in the opposite direction.

Most frequently, multirotor helicopters such as the classical
quadrotor, the hexagon shaped hexarotor, or the octagon
shaped octocopter, have the spinning direction of their motors
set in an alternated fashion. Namely the adjacent motors have
reverse spinning direction with respect to one another. A “de
facto” notation is usually employed to describe this, where
“P” denotes clockwise spinning direction of a motor and “N”
denotes a counterclockwise one. With this notation in hand,
the hexagon shaped hexacopter studied within this article, will
have a NPNPNP setup for the spinning direction of its rotors,
from number 1 to number 6 (see Fig.1). Another spinning
direction setup for hexacopters proposed in the literature,
is to reconfigure the spinning direction of the motors, for
instance a PPNNPN configuration. This allows to maintain full
controllability for total rotor failures, but only in the first four
actuators of the PPNNPN setup ([3], [9], [10], [11]). In this
work we assume that failures are identically likely to appear
in any motor, then this configuration can not be considered
fault tolerant.

To overcome the lack of fault tolerance of the standard
hexagon shaped hexarotor, in [6], instead of the standard de-
sign with rotors pointing in the vertical direction, an alternative
is proposed, which turns out to be completely controllable
even in case of failure in one rotor. It is shown that by tilting
the rotors with respect to the horizontal plane that contains
the motors, towards the vehicle’s vertical axis (see Fig. 2),
fault tolerant control can be achieved without losing control
neither in attitude nor in altitude, even with a faulty motor. An
aspect that must be pointed out about this design, is that tilting
the motors (the multi-rotor’s arms) is an already established
practice, as it allows for a more stable vehicle given it lowers
the center of mass. With the addition of a retractable landing
skid, this also provides a clearer line of sight for camera-type
payloads placed under the vehicle.

There is plenty of research on actuators and sensors failure
detection. A number of references can be cited, where both
performance degradation and total failure are considered ([11],



[12], [13], [14], [15], [16]); in particular, for vehicles with
eight rotors, an error detection and fault isolation technique
based on non-linear observers and LPV control have been
presented in [17] and [18], respectively. However, this research
only focuses on the control strategy after a failure appears in
one of the actuators. The failure is assumed to be a total shut-
down of one of the motors, thus not generating any thrust or
torque.

Here, the design approach proposed in [6] is adopted, but
employing a different rule for actuator allocation. To reach
a desired torque and vertical force, the method proposed in
[6] relays on the calculation of the Moore-Penrose pseudoin-
verse of a given matrix, which is the most common method
to compute the rotors’ commands. However, the solution
rendered by this method may not be feasible, because it
does not take into account the constraints of the actuators,
more specifically, the maximum and minimum forces that
may be exerted by each rotor. This is the reason why a
new strategy is proposed. Instead of minimizing the energy
of the signals commanded to each rotor, something that is
achieved employing the Moore-Penrose pseudoinverse, the
control action exerted by the most stressed motor is taken into
account. It is shown that with the method proposed here, it is
possible to achieve torques and vertical forces in cases where
the method based on the Moore-Penrose pseudoinverse gives
unfeasible solutions. Similar methods have been proposed in
the literature (see for instance [19] and references therein).
But, for the design proposed in [6] it is possible to find the
optimal solution with a simple algorithm that can be run on
a microcontroller of moderate performance without floating
point hardware capabilities.

In this work we present this algorithm and a comparison
between it and the Moore-Penrose pseudoinverse performance
through numerical flight simulation. We also show the com-
parison of the computational load when we use both strategies
within a control algorithm running on a computer based on an
ARM-Cortex M3 microcontroller.

II. NOTATION

Given a matrix X € R"*™, N(X) denotes its kernel and
XT € R™*™ its Moore-Penrose pseudoinverse. Given a matrix
X € R"*™_ we denote X; € R™"*™ as the matrix X, with the
i-th column replaced by zeros. This matrix will be used when
referring to a motor failure in the i-th motor. For a vector
x € R", its i-th component is denoted by z;. Its Euclidean
norm is given by ||z||2 = V2T, and its infinity norm by

|zlloo = max |a].
i=1,....,n

A vector z € R™ will be called non—negative (positive), and
denoted x > 0 (x > 0) , if each of its components are non—
negative (positive) numbers, i.e., 1 > 0,...,z, > 0 (z; >
0,...,2n > 0).

The following short notation: ¢y = cos~y and sy = sinv,
will be used in the sequel.

ei —axi
py A z-axis
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Fig. 2. Side view for a standard hexacopter motor distribution, with tilted
motors

III. VEHICLE MODEL

In this section a model for the vehicle’s actuator allocation
problem, is presented.

Considering unidirectional spinning motors, it is assumed
that each motor exerts a force f; € [0, Fy]. In practice,
each motor is commanded through a Pulse Width Modulated
(PWM) signal w;, which goes from 0 to 100%. Near the
nominal operating point, a linear relation between the PWM
percentage and the exerted force is assumed, with f; = kyu;.
It is also considered that each motor exerts a torque on its
spinning axis, m; = (—1)"k;u;. The kg and k;, constants are
usually established experimentally. The constant ke = ’]j—f is
defined as it will used in what follows, for the sake of clarity.

As it was mentioned above, by tilting the rotors an angle
v (as seen in Fig. 2), fault tolerant control can be achieved
without losing control neither in attitude nor in the vertical
direction (thrust), even with a faulty motor. Here we assume
that the hexarotor has this fault tolerant configuration (see Fig.
2).

We will define [ as the length of the arm measured from
the center of the vehicle to the motor axis along the arm, i.e.
I = ||d;|l2, with ¢ = 1,...,6. The angle v will be the tilting
angle of the motor, measured as depicted in Fig. 2. To simplify
the notation, a parameter « is defined in the following way:
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In [6, Theorem 3], it was shown that this parameter should
be chosen such that 0 < |a| < 1 so that fault tolerance can be
achieved. In what follows, it is assumed that « satisfies this
condition.

Let M,, M, and M., be the control torques exerted by
the motors on the vehicle. Also let F, be the resultant force
exerted by the motors along the vehicle’s z axis. When
all motors are working properly, the relation between the
(Mg, My, M., F,) 4-tuple, and the f forces vector is given
by the following equation:

%gﬁ fi
F, e

The force-torque matrix A = A(y, o) € R**6 is given by,

A= 3)
ey | —} aTall G o 1 o‘z;all %1]1
kBl —55 %6t % s S e

kesy] 1 -1 1 11—
—s7] 1 1 1 11 1]

In order to mathematically represent the case of a failure in
the i-th rotor, the A force-torque matrix, should be replaced
by A; matrix, hence:

My ) — Arvya)- 7 @)

The problem to study consists in solving the follow-
ing inverse problem: given a desired torque-force 4-tuple
(M, My, M, F.), we want to find an f € RS that solves
equation (4). As stated before, to be valid, a solution must
be positive, since the force that the motors can exert is only
in one direction. Moreover, the forces’ modulus, must be
lower than the maximum thrust that motors can generate, i.e.,
fi€ [0, FM], fori=1,...,6.

The most common and frequently used solution for this
problem relies on the Moore-Penrose pseudoinverse of A, as
it gives the minimum || - ||o (euclidean norm) solution and,
consequently, the lowest power configuration for the motors
to achieve the desired torques and thrust:

<t My

fO = Al (’7700 : (5)

However, this may not always yield a valid solution, as stated
before.

IV. COMPUTING THE OPTIMAL || - [|ooc SOLUTION

Without loss of generality due to vehicle symmetry, only the
case of a total failure in motor number 2 will be considered.
Given a desired torque—force (M, M, M., F,) € R* with
F, > 0, the set of solutions of equation (4) can be written as:

M,
e M,
F,

+Bw (6)

fo

with w € N(Aj), B € R and f being the minimal euclidean
norm given by the Moore-Penrose pseudinverse. The kernel
of Ay = As(y, ) is given by,
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Remark 1. Notice that, since 0 < |a| < 1 ([6, Theorem 3]),
certain components of w could be zero, namely wy or ws for
a = —% or a = %, respectively. It can be shown, that this
observation carried out when analyzing the case of a failure
in rotor number 2, is valid similarly in the case of a failure in
any other motor. Apart to the component of w corresponding
to the faulty motor (ws in this case), only one more component

of w could be zero.

Taking into account the constrains (f; € [0, Fi], for every
i =1,...,6), the possible values of 5 must satisfy:

0< fo+pw< Fiy ®)

which renders the following set of constraints on [3:

—fo, .
g>—= if w; >0
-+ w120:> Wi 9
fo, +8 {ﬁg oo it <0 )
Fyn—fo .
< —— if w;>0
4+ pw; < Fy = Wi 10
Joo+ P M {ﬁzFwaoi if w; <0 (10
1=1,2,...,6

If w; =0 for any ¢ = 1,...,6, one of two possibilities exist:
1) if the corresponding fo, is equal or greater than zero, no
additional restrictions appear. But if fy, < 0, there is not any
value of S that satisfies Eq. (8), and a range for 3 does not
exist.

Suppose that there exists a solution f € R® to Eq.(6) which
satisfies the constraints f; € [0, Fs] for every ¢ = 1, ..., 6. This
means that there exists a real nonempty interval Z such that, if



Fig. 3. Linear equations for 3

B € Z, the set of feasible solutions are given by equation (6).
In this case, there is a value that will be denoted f3,,; so that
the force exerted by the most stressed motors will be minimal.
More specifically, we are interested in finding B,,: € Z such
that,

[1fo + Boprwlloe < [ fo + Swloo, (11)

for every 5 € 7.

In equation (6), it can be seen that the set of feasible forces
is described by six linear equations where [ is the optimization
variable. The next lemma characterizes the optimal point S3,,;.

Lemma 1. Let fo,w € R", and a < b such that fo+ Bw >0
for every B € [a,b]. Suppose that w; # 0 for every i =
1,..,n and the pairs (wi, fo;) # (wj, fo;) for every i # j. If
Bo € (a,b) satisfies |fo + fotlloo < |fo + Bl for every
B € (a,b), then there exists j # i such that fo; + Bow; =
Jo; + Bowy.

In Fig. 3 an example is shown for a given torque and force.
The valid range of 3 can be seen, with the potentially possible
optimal points (black crosses), and the intersection points that
are invalid (red crosses) due to the fact that in those cases,
some motors would be exerting a greater force than the ones
corresponding to the intersection points.

V. ALGORITHM

In Algorithm 1, the proposed method for finding the optimal
B is presented. It requires that a range of possible values (3
exists, and also some a priori data consisting of the kernel of
Ai (vector w).

The procedure goes as follows. First of all fy is computed
(Eq. 6). It must be verified from an a priori analysis, if any
w; is equal to zero (see Remark 1), and in that case, if the
corresponding fo, is positive or zero in order to ensure whether
a solution exists. If that is not the case, no value of [ that
yields a positive force set solution exists.

For each pair of motors 7 and j, not considering neither
the faulty motor nor the w; = 0 motor, compute the ;.

Algorithm 1 Minimum search algorithm
Require: 5min < ﬂmaac
Require: mp = # of the motor that is failing
Require: #M = # of motors
Require: w = null(A;)
Require: ¢ = [M, M, M, F.|

1: procedure GET_fopt

2: fo= A'Tn,,-, q

3: if mr == even then

4: x=mp+1

5: else

6: x=mpg-1

7: end if

8: if check_zero(fo,,w;) == ERROR then

9: break

10: end if

11: for i=1 ...#M-1 do

12: for j=2 ...#M do

13: if i, ] 7é mp N !(wz:wj N f0i=f0j) then
14: Bint = get_intersection(mot;,mot;, fo, w)
15: checkl: 6mam 2 Bint Z 5mzn

16: check2: fkgfz,fkgfj,kzl#M
17: if checkl and check2 then

18: Q< (Binta fznt)

19: end if

20: end if

21: end for

22: end for

23: Q (Bmmv f'r%g;gl)

24: Q (ﬁmawa fr%;;z )

25: (ﬁoptv fﬁ,)pt) — m;n 9]
26: end procedure

value, which renders equal forces for motors ¢ and j. Also,
if both motors share the same w; and fy,, the intersection
computation must be skipped as it is the same line. Compute
the corresponding force value as well, using the computed
fo and w. The intersection may or may not occur in the
valid range of 3, with only the former case being relevant
for the solution. The forces exerted by the intersected motors
at this f3;,; value must be equal or greater than the the
forces calculated for the rest of the motors. If these conditions
are both satisfied, this may be a possible optimal point. In
Algorithm 1, Q denotes the set of pairs (3, fmaz) that contain
the information of the value of 8 and the maximum force
exerted at the valid intersections.

Two other pairs are considered as possible optimal solutions,
being the boundaries of 3, and the force exerted in those points
by the most stressed motor(s). Finally, the 3., is the one
associated with the minimum force of all pairs in 2.

VI. RESULTS

In this section simulated results of the actuator allocation
method will be shown. For simplicity, all of them are based
upon commanding a non-zero torque on one axis at a time (for



TABLE I
VEHICLE TECHNICAL SPECS

Variable Value | Units
1 (arm length) 0.375 m
P (weight) 2 kg
Fj; (max. thrust) 0.950 kg
o 107 deg
ky 0.0667 -
k¢ 0.0334 -
kq 0.5 -

Fig. 4. Hexacopter used for testing purposes.

instance M, # 0), while the torques commanded on the other
to axes, are set to zero (for instance M, = 0 and M, = 0).
The vertical thrust is always set to be equal to the weight of
the vehicle, so as to try to maintain the hovering state.

In order to carry out all simulations, the model of a custom
built hexacopter was used. The parameters of the vehicle’s
model, are listed in Table I. A photograph of the vehicle in
flight can be seen in Fig. 4, where it can be noticed that only
five motors are spinning, illustrating fault tolerance. A short
video clip of this flight is available as well ([20]).

Observe that, there is an output of Algorithm 1 if and only
if there exists solution of Eq. (4). Furthermore, the output of
this algorithm will give the solution that minimizes the force
of the most stressed motor. In general 5 # 0, with § = 0
corresponding to the Moore-Penrose pseudoinverse solution.

In Figures 5, 6 and 7, three cases are presented. Case 1
(Fig.5): M, #0, M, =0, M, = 0. Case 2 (Fig.6): M, =0,
M, #0, M, = 0. Case 3 (Fig.7): M, =0, M, =0, M, # 0.
For each figure, the upper curve depicts the variation of the
valid ( range. For a discrete number of torque values on the
abscissae axes, the vertical blue lines, represent the interval of
valid /3 values such that a solution of Eq. (4) exists, with M,,
M,, M, in kg - m units. The computed optimal 5,,; for each
commanded torque is marked with cross.

The lower graphic shows the force exerted by the most
stressed motor (in kg) when using the solution associated
with B,y (solid blue line) in comparison with the same value
corresponding to the pseudoinverse solution (red dots, only
if the pseudoinverse yields a valid force set, i.e., if 3 = 0
belongs to the /3 range).
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Fig. 5. Optimal 8 for motor 2 failure and varying M.
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Fig. 7. Optimal 8 for motor 2 failure and varying M

It can be seen that the proposed solution presents two
advantages with respect to the pseudoinverse. First, the most
stressed motor reduces its exerted force, working further away
from saturation. This is more evident when torque along the z
axis is exerted, where it is shown that the force is reduced as
much as 70 grams, and 40 grams in the hovering case. This
amount represents approximately an 8% lower overall force for
the motor in the best case. While in normal flying condition
the motors are working at around 60% of their maximum
capacity, when a motor fails there appears one motor that is
always much more stressed than the others, resulting in a near-
saturation working condition. Thus the importance of relieving
the working condition of this particular motor, even a little.

The second improvement, that can be seen in all the figures,
is that the proposed solution yields an optimal 3 even in cases
where the pseudoinverse cannot render a valid force set, thus
allowing for a larger range of achievable moments in each
axis. For the results shown, the achievable range of torques
goes from -0.34 ~ 0.14 to -0.54 ~ 0.38 for M,, giving an
improved range of +92%, from -0.42 ~ 0.08 to -0.5 ~ 0.18
for M, (+36%) and from -0.14 ~ 0.99 to -0.3 ~ 0.99 for M,
(+14%), in the particular case for a failure in motor 2.

Also, in Fig. 8, an extreme case is presented. This is
exactly the same plot as before, but considering that the
maximum force that can be exerted by any motor is much
lower (for example, when using smaller motors). In this case,
the pseudoinverse will never give a valid force set solution,
whereas the proposed solution does, and for a large range
of desired moments. While not depicted here, for the same
situation along the x axis the graphic is similar. In the case of
the y axis there exists a range of valid pseudoinverse solutions

Beta ange for Mz - Faiure 112

Fig. 8. Optimal 8 for motor 2 failure and varying M, - Worst case scenario

Attainable control set

I Froposed method
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Fig. 9. Achievable set of moments for pseudoinverse and proposed algorithm
solutions

which does not include M, = 0, while for the proposed
solution it does, so the latter offers the possibility of achieving
hovering.

Finally, in Fig. 9, the set of moments (for vertical thrust
matching the vehicle’s weight) that can be reached using the
pseudoinverse solution versus the proposed algorithm solution
are illustrated. It can be seen that the former is strictly
contained in the latter, so the proposed solution will always
allow for a larger set of achievable control action.

However, there are some points to consider before assuming
the proposed solution may be always better than the pseudoin-
verse one.

Firstly, one may consider that, as the pseudoinverse yields
the minimum norm solution, the power consumed by the
vehicle would be the lowest possible. This is true, but, when
comparing the total power consumed by the motors in each
case, using experimental data on the force-current relation, it
is noted that the additional power needed is as little as 0.1%
more.

Secondly, all the calculations presented here need to be
carried out on microcontroller based flight computer, where
the proposed algorithm must be implemented. Frequently, the
flight computer’s microcontroller is a processor with limited



resources. A question that might be raised concerns the
computation capacity required to run the proposed algorithm,
and if the overall performance of the vehicle may be affected.
Thus, in the section VIII, a comparison will be presented
showing the computational burden undertaken by a given flight
computer, when solving the torque-force problem through the
pseudoinverse, and when running the proposed algorithm.

VII. SIMULATIONS

For comparison between the proposed solution and the
pseudoinverse solution during a flight, an hexacopter MAT-
LAB/Simulink model was used. The simulator is identical for
both solutions except for the control allocator, which obtains
the motor force set from the desired torques and vertical force.
The control system will try to maintain a fixed position in the
air.

In the following simulation, a lateral wind is emulated by
rising a perturbation torque on the y axis linearly in 2 seconds
to 0.68Nm, holding it for a second, and going back to zero
in two seconds. As the control system will try to compensate
this by generating an opposed torque of equal magnitude, and
considering that the pseudoinverse does not give a solution
tat satisfies the force constraints (f; € [0, Fy] for every
i =1, ...,6) for the desired torque (while the proposed solution
does), performance will be degraded, leading to instability
during a brief time because the solution corresponding to the
pseudoinverse forces the motors to operate in saturation. When
the perturbation torque magnitude decreases enough to get a
valid motor force with the pseudoinverse solution, the system
regains control and goes back to the reference position.

In Fig. 10, the lower graphic shows the simulated dis-
turbance torques exerted on the three axes, where only the
one exerted on the y axis rises. In the upper graphic, the
vehicle’s transient behavior can be seen, showing the responses
in the roll, pitch and yaw angles, for the two simulated
actuator allocation strategies. While the perturbations are zero
or low enough, an almost identical behavior is achieved with
the pseudo-inverse and with the new method. But, when the
magnitude of the perturbation is too high for the pseudoinverse
solution to get a valid set of motor commands, performance
begins to degrade, as the vehicle cannot hold the position and
begins to drift, due to the fact that the disturbance torque
cannot be compensated. On the other hand, the new proposed
solution achieves the desired torques and vertical force and as a
consequence it is able to hold the vehicle’s desired orientation
and position. Note how the proposed solution changes mainly
the pitch angle to compensate for the perturbation along
the y axis, while the pseudoinverse solution makes different
maneuvers due to not considering the saturation of the motors.

The transient behavior of the vehicles position, as achieved
by both solutions, is shown in Fig. 11. A remarkable dif-
ference can be appreciated, especially in the upper curve.
As it can be seen, using the proposed actuator allocation
technique, the displacement mainly takes place along the
direction expected (latitude), considering the simulated applied
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Time [s]
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Fig. 10. Orientation of the vehicle and perturbations for optimal and
pseudoinverse solutions

disturbance torque. The pseudo-inverse method on the other
hand, exhibits a poorer response.

Also in Fig. 12, the signal commanded to each motor
is shown. Once the diturbance torque is too high and the
pseudoinverse solution finds holding position hard, the PWM
values lead one of the motors to a full stop (6sec), and
another one to saturation (11sec - 15sec). On the other hand,
throughout this simulation, the proposed solution leads to a
valid motor force set, thus leading the PWM signals to remain
within valid operating limits.

Finally, in Fig. 13, a similar simulation is carried out, but
with the maximum torque exerted in the y axis being 0.86 N'm.
In this case, the magnitude of the disturbance is too high and
the pseudoinverse cannot obtain a valid force solution during a
long period of time, so the vehicle becomes unstable, resulting
in a half barrel roll and finally a crash landing. But again in
this case, the proposed solution always gives a valid motor
force set solution, using mainly the pitch angle to compensate
the disturbance.

VIII. EXPERIMENTAL RESULTS

The flight computer used in this experiment is a custom
design developed within the GPSIC Lab ([21], [22]) for
research purposes, with the sensors and all the electronics
needed to operate a multirotor-type flying vehicle. The board’s
sensors are an MPU6000 Inertial Measurments Unit (IMU), a
BMP180 barometer, and an HMC5883 digital compass (see
Fig. 14). The board’s microcontroller is an LPC1769 from
NXP, an ARM Cortex-M3 class microcontroller running at
100MHz which does not have a Floating Point Unit (FPU).

The on-board computer’s tasks include sensors data acqui-
sition, sensors data fusion, and PID control of the altitude,
roll, pitch and yaw axes. Also, the actuator allocation signals
for the motors must be computed, with telemetry and radio
control reception as well.

We will refer to the control loop as the piece of code
that makes an estimation of the orientation of the vehicle,
then through a PID controller obtains the desired torques and
vertical force, and finally uses the chosen control allocation
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Fig. 15. Execution time for the control loop

solution to obtain the force set to command the motors. The
execution time of the control loop, will be of interest for the
pseudoinverse and the proposed solution, to get and idea of
the extra computing time that the latter requires. It is worth
mentioning that the control loop task may be interrupted by
other tasks with higher priorities (that may or may not have
constant timing), so its execution time will not be constant.

The results are shown in Fig. 15. The control loop in this
example runs at 200H z, every 5mS, and the pseudoinverse
solution is executed, on average, in 4235, while the proposed
solution increases the average (and also peak) execution time
in ~ 300S. While the time increase seems large at first sight,
the control loop execution time roughly takes on average less
than 15% of the time between loops, with peaks that do not
reach 40% of that time.

With the current state of the art, more advanced micro-



controllers with higher capacity and FPU are used in flight
controllers, where the processing time would be much lower
and not present any limitation with timing restrictions.

IX. CONCLUSIONS

An immediate conclusion of this work, is that the actuator
allocation problem in multirotors turns out to be the key to
solving important practical issues, such as fault tolerance.

More specifically, it can be said that on one hand, the
research presented in [6] probed for the hexagon shaped
hexarotor, that only through working with tilted rotors is
fault tolerance achievable. On the other hand, the investigation
presented here probes the usefulness of minimizing the || - || oo
norm leaving the || - ||2 norm behind, as it renders various
benefits.

Not only does the approach proposed here allow for a larger
control allocation space than the one obtainable through the
Moore-Penrose pseudoinverse, but this is also carried out at
a reasonable computational cost, with barely any penalty on
battery charge duration.

In the simulations, it has been shown that greater torques
in all directions may me reached. It is also shown that,
the proposed algorithm effectively reduces the stress on the
fastest spinning motor, which is critical as its saturation
usually renders a highly degraded performance. Moreover, this
allows for maneuvers that are impossible to achieve using the
pseudoinverse solution.

In the computational burden experiment, it has been proved
that the additional computing effort needed to implement
the proposed method is not significantly higher than the
pseudoinverse one, even running on a modest microcontroller.

The algorithm still remains to be tested in real flight, using
the shown vehicle which is currently using the pseudoinverse
solution (see [20]).
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