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Abstract
This article studies the analysis of moving object data col-
lected by location‐aware devices, such as GPS, using graph 
databases. Such raw trajectories can be transformed into 
so‐called semantic trajectories, which are sequences of 
stops that occur at “places of interest.” Trajectory data anal-
ysis can be enriched if spatial and non‐spatial contextual 
data associated with the moving objects are taken into ac-
count, and aggregation of trajectory data can reveal hidden 
patterns within such data. When trajectory data are stored 
in relational databases, there is an “impedance mismatch” 
between the representation and storage models. Graphs 
in which the nodes and edges are annotated with proper-
ties are gaining increasing interest to model a variety of 
networks. Therefore, this article proposes the use of graph 
databases (Neo4j in this case) to represent and store trajec-
tory data, which can thus be analyzed at different aggrega-
tion levels using graph query languages (Cypher, for Neo4j). 
Through a real‐world public data case study, the article 
shows that trajectory queries are expressed more naturally 
on the graph‐based representation than over the relational 
alternative, and perform better in many typical cases.

1  | INTRODUC TION AND MOTIVATION

Moving object data (MOD) applications (Güting & Schneider, 2005) have long been a relevant topic for the GIS 
community. The behavior of moving objects can be traced using location‐aware devices (e.g., GPS, RFID). This pro-
duces trajectory data, which can be analyzed in order to obtain interesting mobility patterns (Renso, Spaccapietra, 
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& Zimányi, 2013). The trajectory of a moving object is given by samples consisting of a finite number of 〈Oid,t,x,y〉‐
tuples, meaning that at a moment in time t, the object with identifier Oid is located at coordinates (x,y). Different 
kinds of analyses can be performed on such data (Giannotti, Nanni, & Pedreschi, 2006; Giannotti, Nanni, Pinelli, & 
Pedreschi, 2007, Karli & Saygin, 2009). Trajectory analysis can not only be performed on the original (raw) trajec-
tories, but also on a database constructed based on the ideas introduced by Spaccapietra and co‐workers (Parent 
et al., 2013; Spaccapietra et al., 2008), where it is assumed that objects move over a background map consisting of 
disjoint geometrical figures to which semantically meaningful attributes are associated. These geometrical figures 
are referred to as places of interest (PoIs) of the application. Typically, they depend on the application area. In a 
tourist application, usual examples of PoIs are restaurants, historical buildings and hotels, while for traffic analysis 
PoIs could be defined as interesting road junctions or large parking lots. A PoI is considered as a stop when a mov-
ing object remains in it for a length of time above some threshold, in which case all (x,y) points of a trajectory that 
are located inside the PoI are transformed to the spatial object that represents this stop. As such, each object's 
trajectory, being a sequence of points, can be transformed into a sequence of stops. Thus, trajectory analysis can 
be applied to these transformed trajectories, which are called semantic trajectories, given that they can provide 
more information than that provided by the (t,x,y) points alone.

The intuition with regard to the problem addressed in this article is given next. Figure 1 (left) shows a sim-
plified version of part of a map of London, which shows two hotels, labeled as Hotel 1 and Hotel 2 in the figure 
and denoted by H1 and H2 in the table on the right. The map also shows St Paul's Cathedral and Buckingham 
Palace. Furthermore, the map shows the movement of the objects O1,O2,O3. Object O1 moves from Hotel 1 to the 
Cathedral, then to the Palace, where it remains for some time, and then returns to its hotel. Object O2 moves from 
Hotel 2 to the Cathedral, next to the Palace (where it spends a few hours) and finally returns to its hotel. Object 
O3 leaves Hotel 2, visits the Palace, and returns to Hotel 2. Figure 1 (center) shows a portion of a table containing 
the raw trajectories (i.e., expressed for each object as 〈t,x,y〉‐tuples). Figure 1 (right) gives the table with the PoIs 
corresponding to the application (details of how these tables are obtained are beyond the scope of this article). 
The points belonging to the same trajectory are temporally ordered, and identified by an object identifier. In this 
setting, a data scientist may pose queries like “How many persons went from Hotel 1 to St Paul's Cathedral, and 
then to Buckingham Palace (stopping to visit both places) during the same day?” An analyst may also want to 
identify interesting patterns in the trajectory data, or be interested in queries such as “Give the percentage of 
trajectories visiting two restaurants in the same day.”

A typical way of performing trajectory analysis is to store trajectory data in relational databases, for ex-
ample, in repositories called trajectory data warehouses (Leonardi et al., 2014; Vaisman & Zimányi, 2013), over 
which online analytical processing (OLAP) is performed. OLAP refers to a collection of operations for exploiting 
multidimensional databases. In a multidimensional database, data are perceived as data cubes, such that the 
axes in the cubes are called dimensions, and cells in the cubes contain one or more measures that quantify 

F I G U R E  1   Introductory example (left), raw trajectories (center), and PoI‐based trajectory (right)



facts. Dimensions are further organized in aggregation hierarchies, thus measures can be aggregated along 
them. Queries in OLAP consist of sequences of operations that manipulate the data cube. The most usual of 
these operations allow aggregating and disaggregating measure values in the cube cells along the dimensions 
(Roll−Up and Drill−Down operations, respectively); selecting a portion of the cube (Dice); or projecting the data 
cube over some of its dimensions (Slice). A problem with this approach, particularly with the huge volumes of 
data now available, is the “impedance mismatch” between the way in which data are modeled and stored. Given 
that trajectories can be typically considered as graphs, storing trajectory data as relations may seem unnatural, 
since current database technology provides solutions that allow graphs to be stored in native form, as explained 
next. Thus, this article discusses how this OLAP‐style semantic trajectory analysis can be performed on graph 
databases.

Property graphs are graphs whose nodes and edges are annotated with properties (Robinson, Webber, & 
Eifrém, 2013). They are typically used to model networks (e.g., social networks, sensor networks) to perform 
data analysis. The property graph data model is an abstraction that can be used to represent trajectories, in ei-
ther their raw or semantic form. In this model, for example, the point coordinates or PoIs can be represented as 
nodes, and there is an edge from one point (or PoI) to the next one in the sequence of points (or PoIs) in the tra-
jectory. In addition, spatio‐temporal coordinates can be included as properties, as well as other characteristics 
of the places visited. Also, hierarchical contextual data can be defined, which would allow the trajectory graph 
to be represented at different granularities, leading to the notion of trajectory aggregation. With these tools, a 
data scientist may also perform OLAP‐like analysis on trajectory graphs. Several different graph data models 
for this (henceforth called graph OLAP) can be found in the literature, and are discussed in Section 2. Modeling 
trajectories using graphs allows them to be stored in native form (i.e., as graphs) using graph databases (Angles, 
2012, 2018), rather than in relational databases, thus preventing the “impedance mismatch” problem mentioned 
above. In particular, in this article, the graph database software Neo4j is used (http://www.neo4j.com). The 
Neo4j community has developed several libraries of functions; one of these is a spatial library (https://neo4j‐
contrib.github.io/spatial/) which allows different spatial layers to be defined that can enhance the possibilities 
for analysis.

Surprisingly, a careful analysis of the literature reveals that there is almost no work on this subject, in light of 
which this article aims to answer the following questions. Can graph databases be successfully used to model, 
store, and query semantic trajectory data? If so, what kinds of queries could benefit most from this approach? In 
particular, the article focuses on analytical queries, that typically require aggregating the trajectory graph up to 
different granularity levels. In addition, the article aims to show that using graph databases has several advan-
tages over the typical solution of storing semantic trajectory data in relational databases, based on the following 
assumptions and facts. First, as already mentioned, graphs are a natural way to represent trajectories. Second, 
storing trajectories in a graph database provides a powerful set of algorithms to exploit these data, at no extra 
cost. Ad hoc alternatives require using different tools for different problems (e.g., querying, finding patterns). 
Third, graph databases such as Neo4j include a high‐level graph query language (in the case of Neo4j, Cypher), 
together with a large collection of functions included in plugins that are easily added to the database, while the 
relational solution requires the use of different languages for the different tasks. Finally, expressing queries using 
graph query languages is far more intuitive for a non‐expert user, than doing so through, for example, complex 
SQL queries.

A real‐world running example is used for this study, based on the Foursquare New York data set (https://www.
kaggle.com/chetanism/foursquare‐nyc‐and‐tokyo‐checkin‐data set). This data set includes about 10 months of 
check‐in data in New York City, collected from the Foursquare social network. In addition, a Time dimension 
hierarchy, and a Stop dimension hierarchy are defined as contextual information. To make the analysis more inter-
esting, the data set is enriched with geographic New York City data.1  It is worth noting that Foursquare is a loca-
tion‐based social network, therefore check‐ins in this data set do not conform to typical GPS‐based trajectories. 



However, taking into account the aims of this research, these sequences of check‐ins can be considered as seman-
tic trajectories where stops have no duration, and there is no move between these stops (or, equivalently, it can 
be assumed that a “move” occurs between two zero‐duration stops).

In summary, to address the research questions above, the following tasks are performed:

1. A property graph data model for representing semantic trajectories is set up. This model is based on
the family of graph OLAP modeling techniques to favor aggregation of trajectory data represented as
graphs.

2. The model is applied to the Foursquare New York data set, enriched with dimensional contextual information
and spatial data, and implemented on a Neo4j database. In addition, the trajectory database is implemented on 
a PostgresSQL relational database.

3. A collection of 12 analytical queries, classified into five classes, is defined. These queries are written in the
Cypher query language for the Neo4j implementation and in SQL for the relational implementation.

4.	 The queries are run and the results discussed.

As will be explained, the study shows that most of the hypotheses are verified. Queries in the graph‐based trajec-
tory model are not only more natural to express than in the relational alternative, but also show better performance 
(ranging from 1.2 to 7 times faster) than the latter in three of the five classes of queries studied, particularly when 
sequential patterns are looked for (e.g., in queries like “Find trajectories that go directly from a home to a station and 
then to an airport”), and when aggregation is involved (e.g., “Compute the total length of each trajectory, as the sum 
of the distance between each pair of consecutive stops”).

The remainder of this article is organized as follows. In Section 2 related work is discussed. Section 3 very 
briefly presents some basic notions on trajectories and OLAP on graphs. Section 4 introduces the data model, 
while in Section 5 a case study is discussed. Section 6 concludes the article and addresses future work and open 
problems.

2  | REL ATED WORK

The field of MODs has been extensively studied by the GIS community. The interested reader is referred to Güting 
and Schneider (2005) for a survey of this large area. Several techniques for the semantic annotation of trajectory 
data have been proposed and studied. du Mouza and Rigaux (2005) propose a model in which raw trajectory data 
are transformed in a sequence of moves (zones represented by labels or IDs). They also define a regular expres-
sion‐based query language that allows queries for mobility patterns. Giannotti et al. (2007) introduce temporally 
annotated sequences as a basis for trajectory pattern mining. A trajectory pattern is defined as a collection of 
trajectories that visit the same places in sequence, with similar time gaps between each of these places. The 
concept of a region of interest (RoI) dynamically computed from the trajectories is defined. With a similar idea, 
Spaccapietra et al. (2008) define “stops and moves” to semantically enrich trajectories. Alvares et al. (2007) study 
trajectory analysis based on the concepts of stops and moves. The concept of stop here differs from the notion of 
RoI: the former is application‐dependent, defined in advance and really relevant to a trajectory, while the latter is 
detected dynamically. Finally, Gómez and Vaisman (2013) presented RE‐Spam, a language for discovering sequen-
tial patterns in semantic trajectories, based on regular expressions. Parent et al. (2013) provide a comprehensive 
description of the notions of trajectory and semantic trajectory.

Regarding graph databases, two database models are used in practice: (a) models based on RDF (https://www.
w3.org/RDF/), oriented to the Semantic Web; (b) models based on property graphs. Models of type (a) represent 
data as sets of triples where each triple consists of three elements that are referred to as the subject, the predicate, 



and the object of the triple. These triples allow arbitrary objects to be described in terms of their attributes and 
their relationships to other objects. Informally, a collection of RDF triples is an RDF graph. In models of type (b) 
(Angles et al., 2017), nodes and edges are labeled with a sequence of attribute‐value pairs. This is an extension of 
classical graph database models, frequently used for implementations in practical applications. The main reason for 
storing attributes in nodes and edges is to speed up the retrieval of the data directly related to a certain node. For 
an extensive and comprehensive bibliography on graph database models, the interested reader is referred to Angles 
and Gutierrez (2008) and Angles (2018). Although the models in (a) have a general scope, the structure of RDF 
makes them not as efficient as the other models, which are aimed at reaching a local scope. An important feature 
of RDF‐base graph models, however, is that they follow a standard, which is not yet the case for the other graph 
databases, therefore they are typically used for metadata representation. Therefore, many works have proposed 
RDF to annotate trajectories with semantic information (da Silva, Times, de Macêdo, & Renso, 2015; Fileto et al., 
2015; Ruback, Casanova, Raffaetà, Renso, & Vidal, 2016). Hartig (2014) proposes a formal way of reconciling both 
models through a collection of well‐defined transformations between property graphs and RDF graphs. He shows 
that property graphs could, in the end, be queried using SPARQL (https://www.w3.org/TR/rdf‐sparql‐query/), the 
standard query language for the Semantic Web. The model used in the next sections to represent and query trajec-
tory data is based on the concept of property graphs.

Several data models to perform OLAP (Kimball, 1996) on graphs have been proposed. GraphOLAP (Chen, Yan, 
Zhu, Han, & Yu, 2009), conceptually, is a framework for OLAP on a set of homogeneous graphs, based on splitting 
the graph into a collection of snapshots that are aggregated in two ways, called informational and topological 
OLAP aggregations. GraphCube (Zhao, Li, Xin, & Han, 2011) provides a framework for computation and analysis 
on OLAP cubes using the different levels of aggregation of a graph. This framework introduced the notion of 
cuboids. A recent proposal, called Graph OLAP (Gómez, Kuijpers, & Vaisman, 2017), models the problem as basic 
graph data (at the finest granularity defined for the application), background information in the form of dimension 
hierarchies, and a collection of so‐called graphoids (the basic graph aggregated at different granularity levels de-
fined by the background dimensions). Analogously to the models commented above, the classic OLAP operations 
(Roll−up, Slice, Dice, Drill−down) are also defined in terms of the components of the model.

Regarding the use of graph databases for analyzing trajectory data, Gryllakis, Pelekis, Doulkeridis, Sideridis, 
and Theodoridis (2018) implemented in Neo4j the Hermes MOD originally developed in Oracle (Pelekis, Sideridis, 
& Theodoridis, 2015). This is basically a datatype system for representing semantic trajectories. The authors also 
extended the Neo4j spatial plugin to facilitate operations on semantic trajectories. In particular, the authors ad-
dress the problem of answering what they call spatio‐temporal keyword pattern (STKP) queries (Gryllakis, Pelekis, 
Doulkeridis, Sideridis, & Theodoridis, 2017). Queries of this kind ask for episodes satisfying a pattern which may 
include keywords, spatial and temporal conditions. For example, an STKP query may ask for trajectories starting 
with an episode (basically a stop) whose geometry is contained in a certain bounding box, followed by an indefinite 
sequence of episodes.

As far as the authors of this work are aware, the only work discussed above that somehow compares with that 
presented here is the work by Gryllakis et al. (2018). However, such work is aimed at extending Hermes with data-
types, and the Neo4j spatial plugin, to answer a specific kind of queries. The work in the present article focuses 
on modeling and storing semantic trajectories as graphs, in order to support analytical (OLAP) queries of different 
kinds, topics not addressed elsewhere. This approach can therefore be applied to any graph database, although in 
this article Neo4j is used, with no addition whatsoever.

3  | BACKGROUND

Some background on the topics addressed in this article is now given, to make the article self‐contained. Basic 
notions on trajectories are introduced first. The second part of this section briefly presents the graph OLAP data 
model that will be used in the reminder of the article.



3.1 | Trajectories and semantic trajectories

The following definitions formalize the intuitive notions given in the example of Section 1. The notion of “trajec-
tory” is defined first.

Definition 3.1. A trajectory is a sequence 〈(t0, x0, y0),  (t1, x1, y1),…,(tN, xN, yN)〉 of spatio‐temporal points, 
where, for i = 0,…,N, ti, xi, yi ∈ R. Their order t0<t1<⋯<tN induces a natural order on the time‐space points in 
the trajectory. The time domain of the trajectory is the interval [t0,tN].

A table like the one in Figure 1 (center) is called a moving object table (MOT). In practice, MOTs can contain 
huge amounts of data. Thus, querying raw trajectory data may be extremely time‐consuming. Furthermore, data 
scientists are often not concerned with such level of geometric detail, but are looking for more aggregated infor-
mation. Also, answering queries may require semantic information that is not present in the MOT. As a solution, the 
literature in the field proposes using the notion of stops and moves to reduce the size of the MOT. Thus, a trajectory 
can be represented in terms of so‐called places of interest for a particular application, characterized as what are 
referred to as stops. This concise table (see Figure 1 (right)) cannot encode the complete information contained in 
the MOT. However, it allows information of interest to be quickly accessed without having to consult the complete 
data set. For this, the notion of “place of interest of an application” must be defined first (Alvares et al., 2007).

Definition 3.2. A place of interest C is represented by a tuple (RC, ΔC). The geometrical figure RC is a (topo-
logically closed) polygon, polyline or point in the plane R2, called the geometry of C, and ΔC is called the
minimum duration of C.

Given an application , the places of interest of , denoted by , are a finite collection of PoIs (relevant to this 
application) whose geometries do not mutually intersect.

Definition 3.3. Let T=〈(t0,  x0,  y0),  (t1,  x1,  y1),…,(tn,  xn,  yn)〉 be a trajectory and let 
={C1= (RC1

,ΔC1
), … ,CN= (RCN

,ΔCN
)} be the PoIs of an application . A stop of T with respect to  is a 

contiguous subtrajectory 〈(ti, xi, yi),  (ti+1, xi+1, yi+1),…,(ti+ℓ, xi+ℓ, yi+ℓ)〉 of T of maximal size such that for some 
k ∈  {1,…,N} the following hold: (a) (xi+j,yi+j) ∈RCk

, for j=0,1,…,ℓ; and (b) ti+�− ti>ΔCk
. That means, if the user 

stays more than the Δ threshold, the place is considered a stop. A move of T with respect to  is a maximal 
contiguous subtrajectory of T:

1. in between two temporally consecutive stops of T;
2.	 between the starting point and the first stop of T;
3.	 between the last stop of T and ending point of T;

or the trajectory T itself, if T has no stops.
There are many possible variations of the definition of stops and moves of a trajectory, depending, for instance,

on the interpolation technique used on the trajectory samples, or in the tolerance used to consider whether an object 
is inside or outside a PoI (Parent et al., 2013, Spaccapietra, Parent, & Spinsanti, 2013). Discussing these alternatives 
is beyond the scope of this article. Intuitively, semantic trajectories are produced by replacing a sequence of 〈t,x,y〉‐
tuples by a sequence of stops, taken from the collection of PoIs. More formally, we have the following definition.

Definition 3.4. A semantic trajectory is a trajectory (see Definition 3.1) with added semantic annota-
tions. Formally, a semantic trajectory is a structure of the form s(Oid,), where Oid is a moving object 
identifier, and  is a sequence of pairs of the form (si,Li), where si and Li are defined as follows: si is a stop 
(Definition 3.3) traversed by Oid; Li is a list of pairs (metadata,value), where metadata is an attribute rep-
resenting a characteristic of si and value is the value of such attribute for si. Moreover,  is time‐ordered, 
which means that the si are listed in the order they were traversed by the object with Oid in s.



3.2 | Graph OLAP

The model adopted in this article for representing trajectories as graphs is composed of three main types of ele-
ments. The first type is a collection of OLAP dimension hierarchies that represent contextual (or background) infor-
mation for the graph (trajectory) data. Dimensions have schema and instances, as usual in databases. A dimension 
schema is a lattice with a unique top and a unique bottom. Each node in a dimension schema is called a dimension 
level, which, in turn, is associated with level instances, containing elements of a certain domain. Dimension in-
stances are collections of hierarchies. The second element in the model is the base graphoid. Assuming a collection 
of dimensions D1,…,Dd in a certain application domain, the nodes and edges of the base graphoid are defined at 
the bottom levels of the background dimensions (i.e., D1,…,Dd). The nodes and edges in a graphoid have a type, as-
sociated with the corresponding background dimensions. The third type of element in the model are the graphoids 
defined at different levels of granularity (these levels are defined in the background dimensions).

Figure 2 illustrates the above for the running example (the complete example is detailed in Section 4 and de-
picted in Figure 3). The base graphoid, representing the trajectory data, is shown in the upper part of the figure. 
Here, the Stop nodes are linked by edges labeled #trajstep. Background dimension hierarchies for the Stop and 
Time dimensions are defined as Stop→Venue→Categories→Category and Minute→Hour→Day→Month→Year 
hierarchies, respectively. The base graphoid is defined at the Stop and Instant granularity levels of these dimen-
sions. Other trajectory graphoids can be defined at different dimension levels, climbing along the Stop and Time 
hierarchies. For example, a trajectory graphoid called a (Stops.Category,  Time.Datehour)‐graphoid is the base 
graphoid aggregated at the [#Datehour] and [#Category] levels, and it is depicted in the bottom part of Figure 2.

For this model, a collection of operations are defined, analogously to the classic OLAP operations that are 
performed over multidimensional data cubes. This way, the Climb operation replaces each node in a graphoid 
with the corresponding node according to the associated dimension level. For example, if an attribute of a node 
representing trajectory stops (as in Figure 2) is instant, a climbing operation to the Hour level along dimension 
Time will produce the (Time.Datehour)‐graphoid. Other operations are defined for the graph model resembling 

F I G U R E  2   Base graphoid and (Stops.Category,Time.Datehour)‐graphoid for the trajectory graph in the 
running example



the corresponding operations on cubes. The Roll−Up operation takes a graphoid to a coarser granularity level 
along a dimension Dd up to a level ℓup, and performs an aggregation over a collection of measures. The Drill−Down 
operation does the opposite of Roll−Up, taking a graphoid to a finer granularity level, along a dimension Dd, down 
to a level ℓdown. The Dice operation produces a subgraphoid of another one, whose nodes satisfy a Boolean condi-
tion φ defined over a elements in the graphoid model. All these operations will be further explained in the running 
example in Section 5.

4  | REPRESENTING AND STORING A TR A JEC TORY A S A GR APH

This section shows, through an example, how a trajectory can be represented using the property graph data 
model and loaded into a graph database. First, the running example to be used in the remainder of the article is 
presented. Then this example is modeled as a trajectory graph.

4.1 | Running example

As mentioned in Section 1, the running example considers data from the Foursquare New York data set. This data 
set includes about 10 months of check‐in data in New York City, with a total of 227,428 check‐ins collected from 
the Foursquare social network. When someone checks in somewhere (e.g., an airport, a restaurant, her private 
home), a point is recorded. Data from more than a thousand users are stored in this data set. The data set is used 
to analyze how people move in the city. Further, the data set is enriched by adding spatial and non‐spatial con-
textual information to the PoIs. Such information is organized as aggregation hierarchies, so semantic trajectories 
can be represented at different granularity levels. For example, in the data set, a point (x,y) is represented as a 

F I G U R E  3   Portion of the trajectory graph instance



(zero‐duration) stop by means of a (latitude, longitude) pair. This stop can be a train station, which in turn is catego-
rized as “Station”. The next stop may be a Thai restaurant, which, at a coarser level, is categorized as “Restaurant”. 
Thus, this subtrajectory becomes a sequence of the form 〈… Station,Restaurant,… 〉. A temporal hierarchy is also 
used for analysis. For example, a check‐in at a PoI at 3 p.m. can be aggregated as an “afternoon” stop if the analyst 
is not interested in a finer level of detail. Note that the original data set contains the check‐in data, and the data 
enrichment has been performed to enhance this use case, as is explained below.

Many interesting queries of different types can be posed in the scenario described above. For example, since 
check‐ins in this data set also include public transport, queries like the following can be expressed:

• “List the users moving between places of interest using a taxi.”
•	 “Which users travel to an airport by taxi during the night?”

The second query implies an aggregation along the temporal dimension. As another type of problem, interesting 
patterns may be investigated, such as:

• “Return the trajectories in which users go from their homes to an airport after 5 p.m.”
•	 “Give the percentage of trajectories in which users go from a restaurant to a sport event and end at a coffee

shop.”

The addition of spatial data layers allows queries such as:

• “Compute the number of users moving between two or more boroughs in the same day.”
•	 “Compute the average distance traveled per user and per day”

Accounting for all of the above, the graph trajectory model is presented next.

4.2 | Modeling the trajectory graph

The Foursquare New York data set contains check‐in data of 1,083 users at different places, or “venues.” Thus, 
there are 1,083 trajectories of different lengths. For this study, long trajectories are not split into smaller ones in 
a “preparatory phase.” In any case, this could be done through queries, asking, for example, for places visited by 
a user on a certain day. Each row in the data set contains the following information: the user identifier, denoted 
userId in the table below; the identifier of the place where the user checked‐in, called venueId; the categorization 
of the venue, with the identifier and the category name, called, respectively, venueCatId and venueCat (these de-
scribe the kind of venue, such as private home, Thai restaurant); the geographic coordinates of the stops, denoted 
latitude and longitude; the timezone offset, called t−zone in the table; the time‐stamp for the stop, called time-
stamp (representing the check‐in time for the user at the stop). These data were loaded into a Postgres relational 
database and an additional field was added, indicating the relative position of the stop in the trajectory, called pos. 
The resulting relational schema and an example tuple are depicted next.

The Trajectories table has the form:

userId venueId venueCatId venueCat lat. long. t‐zone timestamp pos

1 4abc1.... 4bf5... SeafoodRest. 40.78.. −73.97. −240 2012−04−0423:31:31 1

... ... ... ... ... ... ... ... ...

There is also a Categories table, not in the data set. This table has been included in order to make the case 
study more interesting, and to add semantics to the trajectory data. The idea is to further categorize venues. 



For example, in the Trajectories table, the venueCat attribute in the first row details the kind of venue. Thus, a 
“Restaurant” category type can be defined, to aggregate data at a coarser level of detail. Actually, this represents 
a level in an aggregation hierarchy. This new aggregation level is materialized by the catType attribute in the 
Categories table below. This categorization been produced manually by analyzing all kinds of venues one by one, 
and assigning to them a category type. All in all, 33 category types have been defined. The data set defines 251 
venue categories, and each one of them has been assigned to one category type. In summary, 38,333 venues are 
classified into 251 categories, which in turn are classified into 33 category types.

venueId venueCat venueCatId catType

4aa06479f964a5.. PizzaPlace 4bf58dd... Restaurant

... ... ... ...

To model semantic trajectory data as a graph, with graph aggregation in mind, the article adopts the graph OLAP 
model described in Section 3.2. The base graphoid is composed of the trajectories themselves. Each node in the base 
graphoid represents a stop in the trajectory, and has properties (attributes) userid (i.e., the trajectory id), instant (the 
time instant when reaching the stop), and position (the relative position of the stop in the trajectory). Note that, as 
in any conceptual design, many modeling options can be considered (e.g., regarding the representation of an object 
as a node or as an attribute, or placing an attribute in a node or in a relationship). The one chosen for this use case is 
only one of them.

In order to analyze trajectories along contextual dimensions (called background dimensions in graph OLAP), 
and at different levels of granularity, these dimensions must be constructed and associated with the base graphoid 
(in what follows, the “trajectory graph”). In this case, hierarchies for Stop and Time dimensions are built. For the 
former, fields in the original data set are used, together with the categories defined for each kind of venue. The 
latter is constructed using software libraries (as explained below).

The Time hierarchy aggregates data from the instant represented in the stops, up to the year level as follows 
(this is a conceptual representation, the actual one is described below):

The background dimension for stops is defined as follows. The bottom level of the hierarchy, that is, Stops 
(represented in the trajectory graph), is associated with the level Venue, which in turn is associated with level 
Categories through a relationship denoted by hasCategory (the category of the venue is included in the data 
set, and denoted by venueCat in the table above). The hierarchy is completed with the level Category such 
that there is an m‐to‐one relationship, denoted by isSubcategoryOf, from Categories to Category. The instance 
of the level Category corresponds to the attribute catType in the table Categories. For example, the element 
AfghanRestaurant at the Categories level is associated with the element Restaurant at the level Category. Thus, 
the Stop dimension hierarchy is (conceptually) of the form:

Note that although the name Categories for the level may seem confusing, the decision to keep it (instead of, for 
example, subCategories), is led by the intention to remain faithful to the original data.

Figure 4 depicts the schema of the trajectory database expanded with the background dimensions, using the 
graph OLAP notation. Stops in each trajectory are represented by a node of type #Stops, with its corresponding 
attributes. Between each pair of stops there is an edge labeled trajstep. The figure also shows the schema of the 

𝖬𝗂𝗇𝗎𝗍𝖾→𝖧𝗈𝗎𝗋→𝖣𝖺𝗒→𝖬𝗈𝗇𝗍𝗁→𝖸𝖾𝖺𝗋.

𝖲𝗍𝗈𝗉→𝖵𝖾𝗇𝗎𝖾→𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗂𝖾𝗌→𝖢𝖺𝗍𝖾𝗀𝗈𝗋𝗒.



background dimensions. Each aggregation level in the dimension hierarchies is shown as a tuple containing the 
node type and its corresponding level attributes. For example, in the Stop dimension, the level Venues is rep-
resented as the tuple [#Venue,venueid,latitude,longitude]. The relationships representing the hierarchy for the 
venues are indicated by the edges labeled [#isVenue], [#hasCategory], and [#subcategoryOf]. The Time dimension 
is represented analogously. Note that, although in this case the relationships do not contain attributes, in general 
this will not be the case.

Figure 5 shows a portion of an instance of the trajectory graph, represented as a property graph using the 
graph OLAP notation. Two trajectories are shown, namely for user identifiers 2 and 3. At the instance level, there 
is an edge between two stops s1 and s2 if s2 is the stop occurring immediately after s1. For the latter trajectory, the 
complete instance of the hierarchy for the stop in position 67 is shown. It can be seen that, for each node attribute 
in the schema, there is a value in the instance. Also, note that although is this case the data are quite structured, 
one feature of a graph data model is that the schema is totally flexible and unstructured, meaning that, for exam-
ple, it is not a requirement that all nodes contain the same attributes.

4.3 | Storing the trajectory graph

The last step of this process involves loading the trajectory graph into the Neo4j graph, which is quite straight-
forward, and therefore details are omitted here for the sake of brevity. To build the Time dimension, functions 
in the APOC library for Neo4j are used (https://neo4j.com/developer/apoc/). A portion of the resulting graph is 
shown in Figure 3 (the attributes are not shown, because of the graph interface). The edges between stops are 
highlighted in bold. The Time hierarchy is not shown for the sake of clarity. It can be seen, for example, that node 
86 corresponds to the venue with id 11943, which in turn is a vegetarian restaurant, further classified as a restau-
rant. The path between nodes 84 through 87 is also shown, with edges labeled trajstep.

F I G U R E  4   Schema of the trajectory database



In addition, three spatial layers are defined (not shown in the figure), namely nycdistricts, new_york_highway, 
and nyorkpois, representing, respectively, the districts, highways and places of interest in New York City. These 
layers were imported from public data, and loaded into the Neo4j database.

The trajectory graph is now ready to be exploited with the Neo4j tools, and queried using the high‐level lan-
guage Cypher. This is addressed in the next section.

5  | C A SE STUDY

The trajectory graph described in Section 4 can be analyzed in many ways. The first part of this section presents a 
collection of queries classified into five query types. Note that the model is aimed at addressing analytical queries, 
which take advantage of the contextual dimensions of the graph OLAP data model used here, in order to study se-
mantic trajectories at different granularity levels. Thus, most queries include climbing and aggregating data along the 
dimension hierarchies, and the operations à la OLAP involved are explained for each query. Queries are expressed in 
the Cypher query language, the high‐level language that comes with Neo4j. Only the Cypher expressions which may 
be intuitively understood even by non‐expert readers have been included. The remaining queries are detailed in the 
appendix. The second part of the section discusses the performance of the queries, and compares it (when possible) 
against the analogous relational ones.

5.1 | Analytical semantic trajectory queries

This section addresses queries aimed at helping in the decision‐making process, for example, for transport policy‐
makers, companies considering starting a new business and the like. Queries are organized into classes that ac-
count for their main characteristics.

5.1.1 | Queries computing non‐recursive patterns

These are typical queries in trajectory analysis. Below, an example of a query asking for a simple pattern is pre-
sented. Complex patterns are discussed later on, when studying transitive closure queries. The graph OLAP model 
allows patterns at different granularity levels to be found. In this case, note that the semantic trajectory graph is 
defined at the granularity of the stops, and the query below works at the Category level.

F I G U R E  5   The trajectory graph in a Neo4j database



Query 5.1 Find the trajectories that go from a private home to a station and then to an airport, without inter-
mediate stops.

The first MATCH clause describes a pattern matching a sequence of three consecutive stops; the first and
last ones include OLAP Climb operations along the Stops dimension up to the Category dimension level (the 
coarser level in the hierarchy). The second MATCH describes the same climbing pattern for the intermediate stop.
At the Category level, a Dice operation is performed, keeping the desired category, such that only the required 
three‐stop patterns are kept. The WITH clause before the last line acts like a “pipe,” which passes variables from
one portion of the code to the next one (in this case, it passes s1). The result is given as pairs of the form (userId,
〈LOP〉), where userId identifies the trajectory, and LOP is a list of the initial positions of each pattern, within the 
trajectory. Note that in the climbings a shorthand is used, since there is only one possible path up to the Category 
level, and no variables are needed over any intermediate level. If the climbing path were needed, the second 
MATCH clause would read:

The aim of the next query is to compare performance for a longer pattern.

Query 5.2 Find the trajectories that go from a bar (or similar) to a restaurant, again to a bar (or similar) and end 
at a restaurant, without intermediate stops.

The Cypher expression for this query is given in the Appendix and is further discussed in Section 5.3.

5.1.2 | Queries computing traveled distance

Queries in this class compute the distance between points, but they do not use spatial layers or special libraries. 
The functions are part of the Cypher language.

Query 5.3 For each trajectory, compute the distance traveled between each pair of consecutive stops.

Here, all consecutive pairs of stops are computed first (by pattern matching, rather than joins, which would be 
the case in the relational model). Then, the (latitude, longitude) pairs of each stop are obtained. Finally, for each 
trajectory, the distance between two consecutive stops is computed.



The next query shows how to easily analyze distances traveled between different kinds of places, combining 
characteristics of Queries 5.1 and 5.3 and including aggregation along background dimensions.

Query 5.4 For all trajectories that go directly from a private home to an airport, list the user identifier, together 
with the distance traveled between these two places each time that this pattern occurs.

It can be seen that this query first performs two climbings up to the Category level to select (Dice) only stops 
corresponding to homes and airports. Then the aggregation is computed at the bottom level of the dimension (i.e., 
it first climbs, and then computes the distance at the Stop level).

5.1.3 | Spatial trajectory queries

These queries make use of the spatial information contained in layers other than the one where the trajectories 
are represented. The query below uses the layers containing the places of interest (“nyorkpois”), and calls the 
function withinDistance contained in the Neo4j spatial library.

Query 5.5 Find the trajectories passing less than 100 m from a public school.

This query uses the NAME feature included in the spatial layer. The spatial.withinDistance function
computes the distance between stops in the trajectories and the PoIs in the spatial layer. The query returns for 
each user (trajectory) the user identifier, the position of the stop in the trajectory, and the distance between the 
stop and the school.

The following query is more general, since it does not ask for a particular kind of PoI.

Query 5.6 List the trajectories starting at less than 300 m from a place of interest of the city, returning the 
trajectory identifier (i.e., userId), and the actual distance, for all the PoIs in the answer.

The Cypher expression is given in the Appendix.

5.1.4 | Aggregation queries

Queries in this class include different forms of aggregations, typical in data analytics.



Query 5.7 Compute the number of different categories of venues visited by month.

Here, two climbings are required: one along the Stop dimension hierarchy up to the Category level, and an-
other one along the Time dimension up to the MonthsYears level. Finally, the aggregation is performed. The 
climbing and the aggregation conform to a Roll−up operation.

Two more examples of aggregate queries are given next.

Query 5.8 Compute the number of stops per day per user, along with the starting position of each subtrajec-
tory for each day.

Query 5.9 For each trajectory, compute its total length as the sum of the distances between each pair of stops.

The Cypher expressions for these queries are given in the Appendix. The queries are also discussed in Section 5.3.

5.1.5 | Transitive closure queries

Queries of this type are rather more complex than the previous ones, since they not only include graph OLAP 
operations or pattern to match, but also require computing the transitive closure of the trajectory graph. In the 
sequel, the main idea is explained. However, given that it may be hard for readers not familiar with Cypher to un-
derstand the details, most technical details are given in the Appendix.

Query 5.10 For each trajectory, find the paths that go from a private home to an airport in the same day.

This query requires some explanation. Several Climb operations are required along both background dimen-
sions: (1) up to the Category level along the Stops dimension, to find stops corresponding to homes and airports; 
(2) up to the Day level along the Time dimension. Dice operations are finally used to filter out the subtrajectories
not occurring during the same day, and to keep only the trajectories going from a home to an airport. The transitive 
closure of the resulting subgraph is finally computed.



The climbings and dicings are computed in the first two parts of the query (the two MATCH clauses).
Note that this is very intuitive, even for the non‐expert user. There are two tricky parts, however. First, 
the climbing along the Time dimension is performed through a conjunction of Boolean conditions over the 
instant property of the nodes of type Stop. The APOC library is used to operate with dates. The reason is 
that, in this case, this turns out to be more efficient than performing two matchings along the Time hierar-
chy as follows:

The second tricky part involved in this query is caused by the fact that the sequence of stops in the graph, 
at the Category aggregation level, can be of the form {Home, Home, Airport, Airport, Airport…}, and thus all 
combinations are included in the transitive closure. However, the query must only capture the first airport in that 
sequence. The WITH s1, head(firstAirports) clause does the job.

The next query partitions a trajectory into its subtrajectories using the date as a partition function, by means 
of keeping only the longest subtrajectory occurring within a day. The Cypher expression is given in the Appendix.

Query 5.11 For each day, and for each trajectory, find the longest subtrajectory.

As a final example, the next query makes use of the trajectory graph, together with map information, to find 
the districts from which people travel to an airport, together with the part of the day in which this travel starts.

Query 5.12 Give the districts in which people leave from their home to go to the airport before 3 p.m.

The Cypher expression is also given in the Appendix.

5.2 | Running the queries on Neo4j and PostgresSQL

Although query performance is not the core aim of this article, the queries in Section 5.1 are run on the Neo4j 
database designed and populated as described in Section 4. Further, in order to compare performance against a 
relational alternative, the queries are written in the SQL language, and executed on a PostgresSQL database. The 
exception are the queries that involve spatial functions, which it would be unfair to compare, since performance 
heavily depends on the spatial libraries used which, in the case of Neo4j, are still at an early stage of development. 
Both databases are indexed in order to obtain the best possible query performance.

For the Neo4j database, the numbers of nodes and edges are given in Table 1. For the PostgresSQL database, 
there are two tables: Trajectories, with 226,252 tuples; and Categories, with 38,333 tuples.

Queries are run on a machine with a i7‐6700 processor, 12 GB of RAM and a 250 GB disk (actually a virtual 
node in a cluster). The execution times reported are the averages of five runs of each experiment.

5.3 | Discussion

Although comparing performance of a graph database like Neo4j against relational databases with more than 20 
years in the marketplace may at first sight seem unfair, it can give an idea of the potential of the former, even for 
the current state‐of‐the‐art software. The discussion that follows is organized in terms of the query classes de-
fined in Section 5.1. Results are summarized in Table 2. In the discussion, some of the queries will be expressed 
in SQL, although not all of them, since it is assumed that the reader has at least a basic knowledge of SQL.



For non‐recursive pattern queries, writing the Cypher query implies just writing the pattern the user wants 
to check, in a very simple and intuitive way, provided the user has a basic knowledge. In addition to this, these 
kinds of queries are very efficient on a graph database, which can be observed in Table 2: Queries 5.1 and 5.2 are 

TA B L E  1   Number of nodes and edges in the graph database

Type Name Size (#)

Node Stops 2,26,345

Node Venues 38,333

Node Categories 400

Node Category 33

Node Dateminute 1,28,412

Node Datehour 4,523

Node Dateday 252

Node MonthYears 11

Node Years 2

Edge trajstep 2,25,262

Egde isVenue 2,26,345

Edge HasCategoryOf 38,333

Edge subCategoryOf 400

Egde isInstantOf 226,345

Edge isMinuteOf 1,28,412

Edge isHourOf 4,523

Edge isDayOf 252

Edge isMonthOf 11

Total #Objects 7,96,552

TA B L E  2   Execution times for the example queries

1 2 # 3 4 5

Type of Query Query # Neo4j (s) Postgres (s) 3/4

Non‐recursive pattern 5.1 0.18 0.3 0.6

Non‐recursive pattern 5.2 0.41 0.5 0.82

Travelled distance 5.3 2.2 31 (w/o distance) 0.07

Distance & pattern 5.4 0.1 0.25 0.4

Spatial 5.5 720 N/A N/A

Spatial 5.6 22 N/A N/A

Aggregation 5.7 0.8 1 0.8

Aggregation 5.8 1.8 4 0.45

Aggregation & distance 5.9 2.4 N/A N/A

Transitive closure 5.10 (alt. 1) 7.8 60 0.13

Transitive closure 5.10 (alt. 2) 27 60 0.45

Transitive closure 5.11 99 59 1.67

Spatial & transitive closure 5.12 970 N/A N/A



executed in Neo4j in 0.18 and 0.41 s, respectively, while the SQL equivalents take 0.3 and 0.5 s to execute. The 
reason is that the SQL queries require several joins and reads to be performed, as shown below for Query 5.1, 
while joins are solved by direct path navigation in Neo4j.

For queries computing traveled distance, Query 5.3 also performs better on the graph alternative than on the 
relational one. This Neo4j query directly looks for all pairs of stops, and then computes the distance between each 
pair. This is performed, on average, in 2.2 s, while just the join in PostgresSQL takes 31 s (as explained above, the 
geographic part has not been evaluated in the Postgres version). That is, when the SQL query requires joining and/
or sorting the complete database, performance tends to benefit the graph alternative. Query 5.4, which combines 
patterns and distance computation, is also a good example of the former. In this case, the pattern just involves 
checking two kinds of stops (going from home to the airport, in this case). The navigation along the Stop dimension 
is performed very fast, as well as the distance computation. The query takes 0.1 s to complete, outperforming SQL 
which took (without distance computation), 0.25 s.

For spatial queries, only the Neo4j alternative is evaluated, as explained above. For the case of Neo4j, 
results are just given for completeness since, clearly, the spatial plugin provided for Neo4j still has to be de-
veloped. Spatial queries are included here to give an idea of the potential for enhancing graph queries of any 
kind (e.g., transitive closure queries, pattern queries), with spatial functions. Spatial queries that require going 
through all the stops take, naturally, a long time to execute, given the large number of stops in the data set. For 
example, Query 5.6 takes just 22 s to execute, since it only queries the starting position of each trajectory. On 
the other hand, Query 5.5, which needs to go through all the stops in all trajectories, takes over 700 s.

Aggregation queries also require going through the whole database. Thus, the same observations above are also 
valid in this case. Query 5.7 takes 0.8 s to complete on Neo4j, while the SQL alternative takes 1 second. Both queries 
return 359 records. The reason is that the pattern matching performing the join in Neo4j (to climb up to the Category 
level) is more efficient than the SQL join. This is somehow compensated by the fact that SQL performs no additional 
join to climb up to the Month level, while the Cypher query actually performs such climbing. When the size of the 
result increases, the advantage for Neo4j increases, as can be seen in the result for the other aggregation queries.

At this point, the reader may argue that there would be better design alternatives for the relational database. 
This is true for some queries (such as Query 5.3), while a different design would be worse for other ones. And the 
same may hold for the graph model. The relational design chosen is a generic one, with denormalized dimensions, 
which favors navigation along the hierarchies, preventing joining dimension levels—this is called a “star schema” 
design in data warehousing jargon (Kimball, 1996).

For transitive closure queries, it is worth remarking that Cypher has not yet included many functions that would 
be needed to compute paths when the transitive closure of the graph is involved. This is why, as explained, extra 
statements are needed to solve some queries (as in Query 5.10 to filter out unnecessary subpaths). Query 5.10 
takes 7.8 s to execute on the graph database, while the SQL alternative (see the Appendix), which requires recursion 
techniques, takes 1 min. This suggests that, for transitive closure queries, the graph database alternative can be 
competitive and in some cases even better than the recursive SQL solution. Of course, this is not conclusive, since 
many other factors impact on the results. For example, Query 5.10 asks for paths between home and airports. If 



this changes for more common stops such as restaurants and banks, since there are more redundant paths to elim-
inate (due to the Cypher limitations commented above), performance decreases to 27 s in Neo4j (this is alternative 
2 in Table 2), while the SQL query is not significantly affected. In both cases, however, Neo4j performs better 
than Postgres, and these results repeat for many different combinations of filters. This is due to the fact that the 
transitive closure is not computed over the complete graph. There is a situation, however, in which the relational 
alternative is still better than the graph one. This is the case where transitive closure computation is performed over 
the whole graph, as in Query 5.11. When this computation is required, parallel graph computation is needed (Neo4j 
does not scale horizontally). Note that trajectory graphs are excellent candidates for parallelization, since the tran-
sitive closure of each trajectory can be computed independently of the others. On the other hand, it can be seen 
that the SQL query is very efficient for this task, and the query times are stable. These results suggest, then, that 
when the transitive closure is computed over a relatively small portion of the trajectory graph, the graph database 
alternative works better than the relational ones, but when it must be taken over the whole graph, the relational 
database performs better. However, for the same reasons, graph parallelization solutions are great candidates for 
this problem, particularly for trajectory graphs. A study of these alternatives is beyond the scope of this article.

Table 2 summarizes the test results. The last column on the right gives the ratio between the execution times 
on Neo4j and PostgresSQL. The best execution times for each query have been highlighted in bold. In conclusion, 
it can be said that for most kinds of queries the graph database outperforms the relational one, the exception 
being the transitive closure queries requiring computation of the closure of the whole trajectory graph. In this 
case, the relational alternative is clearly better. However, when the closure is taken over a small portion of the 
database, the results are competitive, or even favor the graph option.

6  | OPEN PROBLEMS AND FUTURE WORK

This article discussed the problem of querying a collection of semantic trajectories modeled as a property graph 
and stored in a graph database, focusing on analytical queries, which imply aggregating the trajectories up to dif-
ferent granularity levels. Typically, trajectories are stored in a relational database. Given that trajectories can be 
seen as a graph, modeling and storing them as graphs instead of relations sounds natural, and merits studying the 
plausibility of this solution. The outcome of this study suggests, from a qualitative point of view, that analytical 
trajectory queries are more naturally expressed as graphs, using a graph query language (in this case, Cypher, the 
query language for Neo4j), than via a relational representation. Moreover, from a quantitative point of view, for 
three out of the five classes of queries studied (non‐recursive patterns, distance, spatial, aggregation, and transi-
tive closure queries), the graph database queries run from 1.2 to 7 times faster than the relational ones. Only 
transitive closure queries that must go through the complete graph delivered better performance on the relational 
database. However, when queries require computing the transitive closure of only a relatively small portion of the 
database, the graph database is competitive, and even outperforms the relational database.

The results reported here, however promising, leave plenty of room for more research work. As a first indica-
tion of the road to follow, note that even for the queries where results are not positive (basically transitive closure 
queries), such results are very likely to change if parallel execution is employed. There are many parallel processing 
graph databases (e.g., GraphFrames (https://graphframes.github.io/), Janusgraph (http://janusgraph.org/) that may 
take advantage of the characteristics of trajectory graphs in order to, for example, compute the transitive closure 
of the trajectory graph in parallel, and aggregate the results after this computation. This may speed up computation 
by orders of magnitude. Therefore, the work presented will be followed up with an exploration the benefits of using 
those kinds of graph databases.
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ENDNOTE
1	 Maps where downloaded from http://www.mapcr​uzin.com 
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APPENDIX CYPHER AND SQL EXPRESSIONS FOR QUERIES IN SECTION 5.1
This Appendix includes the Cypher or SQL expressions not included in the main body of the paper.

Query 5.2 Find the trajectories that go from a bar (or similar) to a restaurant, again to a bar (or similar) and end 
at a restaurant, without intermediate stops.

The aim of this query is to compare performance for long patterns.

Query 5.6 List the trajectories starting at less than 300 m from a place of interest of the city, returning the tra-
jectory identifier (i.e., userId), and the actual distance, for all the PoIs in the answer.

Query 5.8 Compute the number of stops per day per user, along with the starting position of each subtrajectory 
for each day.

https://doi.org/10.1111/tgis.12556


 Query 5.9 For each trajectory, compute its total length as the sum of the distances between each pair of stops.

Query 5.10 For each trajectory, find the paths that go from a private home to an airport in the same day.
The Cypher expression is given in the main body of the paper. The SQL expression for this query reads as 

follows.



Query 5.11 For each day, and for each trajectory, find the longest subtrajectory.
The corresponding Cypher query reads:

In SQL the query reads:



Query 5.12 Give the districts in which people leave from their home to go to the airport before 3 p.m.
The query makes use of additional layers, in this case, the layer containing the districts. The query in Cypher is 

expressed as follows.

The Neo4j spatial plugin still does not provide a function that can compute if a point is contained inside a 
polygon. Therefore, this query is solved using the bounding boxes of the districts, as can be seen in the last part 
of the query. The first part computes the bounding box containing all stops in the data set. Then, the spatial.
bbox function returns all the district in this bounding box. Then all trajectories leaving from a home to go to an
airport before 3pm are computed. Finally, the districts corresponding at these homes are computed (based on the 
bounding box of the district geometry).




