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Abstract. For large classes of infinite-dimensional time-varying control systems, the equivalence
between integral input-to-state stability (iISS) and the combination of global uniform asymptotic
stability under zero input (0-GUAS) and uniformly bounded-energy input/bounded state (UBEBS)
is established under a reasonable assumption of continuity of the trajectories with respect to the
input, at the zero input. By particularizing to specific instances of infinite-dimensional systems,
such as time-delay, or semilinear over Banach spaces, sufficient conditions are given in terms of the
functions defining the dynamics. In addition, it is also shown that for semilinear systems whose
nonlinear term satisfies an affine-in-the-state norm bound, it holds that iISS becomes equivalent to
just 0-GUAS, a fact known to hold for bilinear systems. An additional important aspect is that the
iISS notion considered is more general than the standard one.
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1. Introduction. Analyses and characterizations of input-to-state stability (ISS)
and integral-ISS (iISS) for infinite-dimensional systems, such as time-delay systems,
systems modelled by partial differential equations (PDEs) and semilinear systems on
Banach spaces, have seen great progress mostly in the last decade [5–7,13–16,18–22,
25–30, 32–36, 38]. The reader may consult the excellent survey [31] for an updated
account of results on ISS of infinite dimensional systems. As far as generality is
concerned, arguably much greater progress has been made in the analysis and char-
acterization of ISS [31], as opposed to iISS. For example, for large classes of infinite-
dimensional systems not restricted to semilinear systems over Banach spaces, [32]
characterizes ISS in terms of simpler properties and [26] does so for input-to-state
practical stability. As mentioned in [32], characterizations of ISS in terms of other
simpler stability properties are advantageous in simplifying proofs and in analysing
different classes of systems.

As regards characterizations of iISS for time-invariant infinite dimensional sys-
tems, [5,22] characterize iISS for time-delay systems in terms of Lyapunov-Krasovskii
functionals. For linear (infinite-dimensional) evolution equations on Banach spaces
with bounded input operators, it is known that ISS, iISS and uniform global as-
ymptotic stability under zero input become equivalent [30], analogously to finite-
dimensional linear systems. More generally, for bilinear infinite-dimensional systems
on Banach spaces [30] establishes the equivalence between iISS and uniform global
asymptotic stability under zero input and establishes the existence of iISS-Lyapunov
functions in the case of Hilbert spaces, under additional assumptions. As for linear
infinite-dimensional systems with unbounded input operators, [15] characterizes iISS
in terms of the exponential stability of the semigroup and an admissibility condition
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on the inputs. In [13], the iISS of bilinear systems with unbounded operators is char-
acterizated in terms of the iISS of certain associated linear systems. To the best of
the authors’ knowledge, other more general characterizations have not yet been devel-
oped, nor characterizations valid for time-varying systems. One problem is that many
of the characterizations developed in [1] for time-invariant finite-dimensional systems
cease to hold already when the finite-dimensional system is time-varying or when the
setting is such that existence of an iISS-Lyapunov function is not guaranteed [8]. One
characterization that remains valid in these cases is the superposition-type one

“iISS ⇔ 0-GUAS ∧ UBEBS”,(1.1)

stating that iISS is equivalent to the combination of global uniform asymptotic sta-
bility under zero input (0-GUAS) and uniform bounded-energy input/bounded state
(UBEBS) [8, 10], as originally stated for time-invariant systems in [2].

In this context, the contribution of the current paper is to show that the charac-
terization of iISS as the combination of 0-GUAS and UBEBS remains valid for broad
classes of time-varying infinite-dimensional systems, provided a reasonable condition
of continuity with respect to the input, uniformly with respect to initial time, is satis-
fied by the system trajectories, at the zero input. This characterization is established
with a focus on minimizing assumptions on the input so that, in addition to the stan-
dard iISS notion involving an integral of a function of the input, the characterization
also holds for more general notions of iISS and UBEBS. By particularizing to spe-
cific classes of systems, such as semilinear over Banach spaces or to retarded ordinary
differential equations, simpler sufficient conditions to ensure the required continuity
with respect to the input are also given.

The organization of the paper is as follows. Section 2 gives the definitions of
time-varying system with inputs and the required stability properties, and poses the
specific problem addressed. In Section 3, the required assumption of continuity with
respect to the input is given and the equivalence (1.1) is established. Sections 4
and 5 provide simpler sufficient conditions to ensure the required continuity in the
case of time-delay systems and semilinear systems on Banach spaces, respectively.
Section 5 also contains the particular case where iISS becomes equivalent to just 0-
GUAS. Conclusions and final remarks are given in Section 6. Most proofs are given
in the Appendices.

Notation. N, R, R>0 and R≥0 denote the natural numbers, reals, positive, and
nonnegative reals, respectively. We write α ∈ K if α : R≥0 → R≥0 is continuous,
strictly increasing and α(0) = 0, and α ∈ K∞ if, in addition, α is unbounded. We
write β ∈ KL if β : R≥0 × R≥0 → R≥0, β(·, t) ∈ K∞ for any t ≥ 0 and, for any fixed
r ≥ 0, β(r, t) monotonically decreases to zero as t → ∞. The single bars | · | denote
the Euclidean norm in Rn.

2. Preliminaries.

2.1. Time-varying systems with inputs. In order to make our results ap-
plicable to different classes of time-varying systems with inputs, for example those
described by ordinary differential equations (ODE) with or without impulse effects,
retarded differential equations (RDE), semilinear differential equations (SDE) and
switched systems, among others, we consider the following general definition of time-
varying system with inputs.

Definition 2.1. Consider the triple Σ = (X ,U , φ) consisting of
1.- A normed vector space (X , ‖ · ‖X ), which we call the state space.
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2.- A set of admissible inputs U = {u : R≥0 → U}, where U is a vector space of input
values, which satisfies:
(a) The zero input belongs to U , i.e. 0 ∈ U with 0 : R≥0 → U such that 0(t) ≡ 0.
(b) If u, v ∈ U and t > 0, then the concatenation u]tv ∈ U , where

u]tv(τ) =

{
u(τ) τ ≤ t,
v(τ) τ > t.

3.- A transition map φ : Dφ → X , with Dφ ⊂ {(t, s, x, u) : t ≥ s ≥ 0, x ∈ X , u ∈ U},
such that for all s ≥ 0, x ∈ X and u ∈ U , {t ∈ R≥0 : (t, s, x, u) ∈ Dφ} = [s, t(s,x,u))
with s < t(s,x,u) ≤ ∞.

We say that Σ is a system with inputs if the following properties hold:
(Σ1) Identity: φ(t, t, x, u) = x for all t ≥ 0, x ∈ X and u ∈ U .
(Σ2) Causality: for all (t, s, x, u) ∈ Dφ with t > s, if v ∈ U satisfies v(τ) = u(τ)

for all τ ∈ (s, t], then (t, s, x, v) ∈ Dφ and φ(t, s, x, v) = φ(t, s, x, u).
(Σ3) Semigroup: for all (t, s, x, u) ∈ Dφ with s < t, if s < τ < t

then φ(t, τ, φ(τ, s, x, u), u) = φ(t, s, x, u).

This definition of system involves existence and uniqueness of solutions and is
an extension of that in [31, 32] to encompass various classes of time-varying systems.
One difference here is that the function φ(·, s, x, u) is not assumed continuous for
every fixed (s, x, u) (cf. property Σ3 in [31]). This allows for the occurrence of jumps
in the state trajectory. For other definitions of systems with inputs the reader may
consult [17,40].

Given t0 ≥ 0, x0 ∈ X and u ∈ U , the function x(t) = φ(t, t0, x0, u), t ∈
[t0, t(t0,x0,u)), will be referred to as the trajectory of Σ corresponding to the initial
time t0, initial state x0 and input u. We say that Σ is forward complete if for all
t0 ≥ 0, x0 ∈ X and u ∈ U , t(t0,x0,u) = ∞, i.e., if every trajectory is defined for all
times t greater than the initial time.

Given an interval J ⊂ R≥0 and u ∈ U we define uJ : R≥0 → U via uJ(τ) = u(τ)
if τ ∈ J and uJ(τ) = 0 otherwise. Since u(s,t] = 0]su]t0 and u(s,∞) = 0]su, both
u(s,t] and u(s,∞) belong to U . Due to causality, if (t, s, x, u) ∈ Dφ and t > s then
φ(τ, s, x, u(s,t]) = φ(τ, s, x, u(s,∞)) = φ(τ, s, x, u) for all τ ∈ (s, t].

2.2. Stability definitions. The stability properties considered next are straight-
forward extensions of those defined for specific classes of systems with inputs. The
set of admissible inputs U is assumed to be endowed with a nonnegative admissible
functional, defined as follows.

Definition 2.2. The functional ‖ · ‖U : U → R≥0 ∪ {∞} is said to be admissible
if it satisfies the following conditions:
a) ‖0‖U = 0;
b) for all 0 ≤ s < t < ∞ and all u ∈ U , ‖u(s,t]‖U < ∞ and ‖u(s,t]‖U ≤ ‖u(s,∞)‖U ≤
‖u‖U .

An admissible functional ‖ · ‖U is not required to be a norm on U , and is not even
necessarily finite for every input u. The set of inputs u ∈ U for which ‖u‖U <∞ will
be denoted by UF . Examples of admissible functionals are next defined.

Definition 2.3. Let U be a normed space with norm ‖·‖U and let L∞loc(R≥0,U) =
{u : R≥0 → U : ‖u(·)‖U ∈ L∞loc(R≥0)}, where L∞loc(R≥0) is the set of locally essentially
bounded Lebesgue measurable functions h : R≥0 → R. If U ⊂ L∞loc(R≥0,U), then the
functionals defined below are admissible:
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a) ‖u‖∞ := ess supt≥0‖u(t)‖U.
b) Given a positive, strictly increasing and unbounded sequence λ = {τk}, ‖u‖∞,λ :=
‖u‖∞ + supk ‖u(τk)‖U.

c) Given κ ∈ K, ‖u‖κ :=
∫∞
0
κ (‖u(s)‖U) ds.

d) For κ and λ as above, ‖u‖κ,λ := ‖u‖κ +
∑
k κ(‖u(τk)‖U).

e) For κ as above and T > 0, ‖u‖κ,T := supt≥0 ‖u(t,t+T ]‖κ.

The following stability properties are extensions to time-varying systems of some
of those in [32]. Since ‖u‖U = ∞ may be true for some inputs u ∈ U , we adopt the
convention ρ(∞) =∞ for any function ρ ∈ K∞.

Definition 2.4. Let Σ be a system with inputs and let ‖ · ‖U be an admissible
functional. Then
a) Σ is zero-input globally uniformly asymptotically stable (0-GUAS) if there exists

β ∈ KL such that for all t0 ≥ 0 and x0 ∈ X , the trajectory x(t) = φ(t, t0, x0,0) is
defined for all t ≥ t0 and satisfies

‖x(t)‖X ≤ β(‖x0‖X , t− t0) ∀t ≥ t0.(2.1)

b) Σ is input-to-state stable (ISS) with respect to the admissible functional ‖ · ‖U ,
abbreviated ‖·‖U -ISS, if Σ is forward complete and there exist ρ ∈ K∞ and β ∈ KL
such that for all t0 ≥ 0, x0 ∈ X and u ∈ U , the corresponding trajectory x(·) of Σ
satisfies

‖x(t)‖X ≤ β(‖x0‖X , t− t0) + ρ(‖u‖U ) ∀t ≥ t0.(2.2)

c) Σ is uniformly globally bounded (UGB) with respect to the admissible functional
‖ · ‖U , abbreviated ‖ · ‖U -UGB, if Σ is forward complete and there exist α, ρ ∈ K∞
and c ≥ 0 such that for all t ≥ t0 ≥ 0, x0 ∈ X and u ∈ U , the corresponding
trajectory x(·) of Σ satisfies

‖x(t)‖X ≤ c+ α(‖x0‖X ) + ρ(‖u‖U ) ∀t ≥ t0.(2.3)

d) Σ is uniformly globally stable (UGS) with respect to the admissible functional ‖·‖U ,
abbreviated ‖ · ‖U -UGS, if it is ‖ · ‖U -UGB and (2.3) holds with c = 0.

The word “uniformly” in Defintion 2.4 a), c) and d) involves uniformity both with
respect to the state and with respect to initial time. For conciseness, we avoid the use
of a double ‘U’ and use ‘0-GUAS’ instead of the ‘0-UGAS’ used to denote uniformity
with respect to the state in, e.g. [25]. Whenever the admissible functional ‖ · ‖U is
clear from the context, we may remove the prefix ‖ · ‖U and simply refer to the ISS,
UGB or UGS properties.

Note the following:
i) Due to causality (Σ2) and Definition 2.2b), replacing ‖u‖U by ‖u(t0,t]‖U or ‖u(t0,∞)‖U

in (2.2) and (2.3), equivalent definitions of ISS and UGB (or UGS), respectively,
are obtained.

ii) Since (2.2) and (2.3) are trivially satisfied when ‖u‖U =∞, no loss of generality
is incurred if only inputs belonging to UF are considered in the definitions of ISS
and UGB.

iii) When the system Σ satisfies the boundedness-implies-continuation (BIC) prop-
erty, i.e. when φ(·, s, x, u) being bounded on [s, t(s,x,u)) implies that t(s,x,u) =∞,
then the forward completeness requirement can be removed from Definition 2.4.
This happens because, since from item i) above ‖u‖U can be replaced by ‖u(t0,t]‖U
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and ‖u(t0,t]‖U <∞ from Definition 2.2b), then the satisfaction of (2.2) or (2.3) for
all t ∈ [s, t(s,x,u)) and all s ≥ 0, x ∈ X and u ∈ U would imply that t(s,x,u) =∞
and therefore that Σ is forward complete.
Some standard stability properties defined for specific classes of systems, such

as those modelled by ODEs with or without impulse effects, RDEs or PDEs, are
recovered by choosing the admissible functional ‖ · ‖U in a suitable manner. For
example, for systems without impulse effects, ‖ · ‖∞-ISS is the standard ISS property
and ‖ · ‖∞-UGS is the uniform bounded-input bounded-state property [3]. Moreover,
for κ ∈ K∞, then ‖ · ‖κ-ISS becomes iISS, and ‖ · ‖κ-UGB and ‖ · ‖κ-UGS become
uniformly bounded-energy input/bounded-state (UBEBS) and UBEBS with constant
c = 0, respectively (see [2, 5, 8, 36]). In these cases, κ is referred to as the iISS- or
UBEBS-gain according to the considered property. Also, ‖ · ‖κ,T -ISS is an extension
of the p-ISS property considered in [24]. In the case of systems with impulse effects,
where the state jumps at a fixed sequence λ of impulse-time instants, ‖ · ‖∞,λ-ISS,
‖ · ‖κ,λ-ISS, ‖ · ‖κ,λ-UGB and ‖ · ‖κ,λ-UGS become, respectively, the usual ISS, iISS,
UBEBS and UBEBS with constant c = 0 properties and in the case of the iISS and
UBEBS properties κ is also referred to as the iISS- and UBEBS-gain [10–12,23].

A common feature of ‖·‖κ and ‖·‖κ,λ is that both functionals satisfy the following
condition (actually with equality):

(E) For every u ∈ U and 0 ≤ t1 < t2 < t3, ‖u(t1,t3]‖U ≥ ‖u(t1,t2]‖U + ‖u(t2,t3]‖U .

Definition 2.5. Let Σ be a system with inputs and let ‖ · ‖U be an admissible
functional that satisfies condition (E).

• If Σ is ‖ · ‖U -ISS, then we say that Σ is ‖ · ‖U -iISS
• If Σ is ‖ · ‖U -UGB, then we say that Σ is ‖ · ‖U -UBEBS.
• If Σ is ‖ · ‖U -UGS, then we say that Σ is ‖ · ‖U -UBEBS with constant c = 0,

or just ‖ · ‖U -UBEBS0.
We remove the prefix ‖ · ‖U when this is clear from the context. In addition, when
‖ · ‖U = ‖ · ‖κ for some κ ∈ K∞, we refer to κ as the iISS, UBEBS or UBEBS0 gain.

2.3. Problem statement. It is clear from the very definitions that ‖ · ‖U -iISS
implies 0-GUAS and ‖ · ‖U -UBEBS. The aim of the current paper is to investigate the
converse implication.

Conditions that ensure that 0-GUAS and UBEBS imply iISS are known for sys-
tems generated by ODEs with or without impulse effects [2,8,10] and for time-invariant
time-delay systems [5]. These conditions involve assumptions on the functions appear-
ing in the equations that define the systems. More specifically, such functions must
have some type of regularity and satisfy specific bounds. These conditions suggest
that, for the kind of general system considered here, the transition map φ is required
to have some specific regularity.

The following example gives some insight into the type of regularity which may
be required.

Example 2.1. Consider the system Σ = (X ,U , φ) with (X , ‖ · ‖X ) = (U, ‖ · ‖U) =
(R, | · |), U the set of piecewise constant functions u : R≥0 → R and φ : Dφ → R,
with Dφ = {(t, s) : t ≥ s ≥ 0} × R× U , defined as follows. Pick any smooth function
g : R → R such that 0 ≤ g(r) ≤ 1 for all r ∈ R, g(r) = 1 if |r| ≤ 1 and g(r) = 0 if
|r| ≥ 2. For a given (t0, x0, u) ∈ R≥0 × R × U , let x(·) be the unique solution of the
scalar initial value problem

ẋ = −x+ g(x)v(t), x(t0) = x0,(2.4)

where v : R≥0 → R is the piecewise constant function defined by v(t) = 1/u(t) if
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u(t) 6= 0 and v(t) = 0 if u(t) = 0. Note that x(·) is defined for all t ≥ t0. Then we
define φ(t, t0, x0, u) = x(t) for all t ≥ t0. It is a simple exercise to show that the triple
(X ,U , φ) is a system with inputs according to Definition 2.1 and that it is forward
complete.

For u = 0, we have that v = 0, and then Σ is 0-GUAS since the trajectories
corresponding to u satisfy the equation ẋ = −x. From the fact that g(r) = 0 for all
|r| ≥ 2, it follows that any solution of (2.4) satisfies |x(t)| ≤ 2 + |x0| for all t ≥ t0
and therefore Σ is ‖ · ‖κ-UBEBS for any κ ∈ K∞.

Next, we will prove that Σ is not ‖ · ‖κ-iISS for any κ ∈ K∞. Suppose on the
contrary that Σ is ‖ · ‖κ-iISS for some κ ∈ K. Then there exist β ∈ KL and ρ ∈ K∞
so that (2.2) holds, with ‖u‖κ in place of ‖u‖U .

We claim that for every δ > 0 there exists an input u such that ‖u‖κ < δ and
|φ(t, 0, 0, u)| > 1

2 for some t > 0.
Let µ > 0 be such that µ < 1− e−1 and κ(µ) < δ. Define u(t) = µ if t ∈ [0, 1] and

u(t) = 0 for t > 1. Then ‖u‖κ = κ(µ) < δ. Let x(t) = φ(t, 0, 0, u) and suppose that
|x(t)| ≤ 1

2 for all t ∈ [0, 1]. From the definition of φ it follows that ẋ(t) = −x(t) + 1
µ

for all t ∈ [0, 1] and that x(0) = 0. Therefore x(t) =
∫ t
0
e−(t−s)

µ ds = 1−e−t
µ . In

consequence x(1) = 1−e−1

µ > 1 which is a contradiction. So, there must exist t ∈ [0, 1]

such that |x(t)| > 1
2 . This proves the claim.

From the claim it easily follows that Σ cannot be ‖·‖κ-iISS, since taking δ > 0 such
that ρ(δ) < 1

2 and u and t as in the claim, then (2.2) implies that 1
2 < |φ(t, 0, 0, u)| ≤

ρ(‖u‖κ) < 1
2 , which is absurd.

Note that the transition map φ(t, t0, x0, u) in the preceding example is continuous
in (t, t0, x0) for any fixed u ∈ U but, due to the claim above, it is not continuous with
respect to the input u when u is near the zero input 0 (i.e. when ‖u‖κ is small).
This suggests that for the problem to have a solution some continuity condition on
the map φ with respect to small inputs u may be required.

The more specific problem addressed is hence the following:
Find conditions on the transition map φ that ensure that the 0-GUAS and ‖ · ‖U -

UBEBS of Σ imply the ‖ · ‖U -iISS of Σ.

3. Main result: a characterization of iISS. By solving the previous problem,
the characterization of iISS as the superposition (1.1) will be extended to general
classes of infinite-dimensional systems. The following condition on the transition map
will be required.

Assumption 1. The transition map φ of the system Σ satisfies the following:
For every r > 0, ε > 0 and T > 0 there exists δ = δ(r, ε, T ) > 0 such that for every
t0 ≥ 0, x0 ∈ X and u ∈ U with ‖u‖U ≤ δ, if for some t∗ ∈ [t0, t0 + T ] it happens
that ‖x(t)‖X ≤ r and ‖z(t)‖X ≤ r for all t ∈ [t0, t

∗], where x(t) = φ(t, t0, x0, u) and
z(t) = φ(t, t0, x0,0), then

‖z(t)− x(t)‖X ≤ ε ∀t ∈ [t0, t
∗].(3.1)

Assumption 1 means that the solution x corresponding to an input can be made
arbitrarily close to the zero-input solution z by reducing the input, as measured by
the admissible functional, whenever both solutions remain bounded by r over some
time interval of prespecified maximum length T . This should happen uniformly over
the initial time.

The following theorem is our main result.
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Theorem 3.1. Let Σ be a forward complete system endowed with an admissible
functional ‖ · ‖U satisfying condition (E). Let Assumption 1 hold. Then the following
are equivalent:
(a) Σ is 0-GUAS and UBEBS.
(b) Σ is iISS.

The proof of Theorem 3.1 employs the ε-δ characterization of the ISS property pro-
vided by Theorem 3.2 and Lemma 3.1, whose proofs are given in the Appendix. This
ε-δ characterization applies to the general ISS property in Definition 2.4b) where the
input functional should be admissible but is not required to satisfy condition (E). In
what follows, Br denotes the closed ball of radius r ≥ 0 centred at 0 in X , namely
Br = {x ∈ X : ‖x‖X ≤ r}.

Theorem 3.2. Let Σ be a forward complete system and let ‖·‖U be an admissible
functional. Then Σ is ‖ · ‖U -ISS if and only if the following conditions hold:
C1) For every T > 0, r > 0 and s > 0 there exists C ≥ 0 such that for all t0 ≥ 0,

x0 ∈ Br and u ∈ U so that ‖u‖U ≤ s, ‖φ(t, t0, x0, u)‖X ≤ C for all t ∈ [t0, t0+T ].
C2) For all ε > 0 there exists δ > 0 such that for every t0 ≥ 0, x0 ∈ Bδ and u ∈ U

with ‖u‖U ≤ δ, ‖φ(t, t0, x0, u)‖X ≤ ε for all t ≥ t0.
C3) There exists ν ∈ K such that for all r ≥ ε > 0 there is a positive T = T (r, ε)

so that the following holds: for every t0 ≥ 0, x0 ∈ Br and u ∈ U we have that
‖φ(t, t0, x0, u)‖X ≤ ε+ ν (‖u‖U ) for all t ≥ t0 + T .

Theorem 3.2 is a generalization of the ε-δ characterization of ISS in Lemma 2.7
of [41]. The condition C1) is not needed in [41] because it is automatically satisfied for
time-invariant finite-dimensional systems defined by ẋ = f(x, u) with f locally Lip-
schitz in (x, u). For time-invariant infinite-dimensional systems, C1) becomes equiv-
alent to the bounded reachability sets (BRS) property [32] (but here ‖ · ‖U is not
required to be a norm). Hence, C1) can be regarded as BRS uniformly with respect
to initial time (UBRS).

Given C3), condition C2) can be relaxed to:
C2’) for all h > 0 and ε > 0, there is a δ > 0 such that for every t0 ≥ 0, x0 ∈ Bδ

and u ∈ U with ‖u‖U ≤ δ, then ‖φ(t, t0, x0, u)‖X ≤ ε for all t ∈ [t0, t0 + h],
because C2’) and C3) imply C2). For time-invariant systems, C2’) becomes equivalent
to the CEP (continuous at the equilibrium point) and C3) to the UAG (uniform
asymptotic gain) properties in [32]. C2’) and C3) can hence be regarded as CEP
and UAG, respectively, uniformly with respect to initial time (UCEP and UUAG).
Replacing C2) by C2’), Theorem 3.2 then generalizes the equivalence between items
i) and ii) in [32, Thm. 5], namely

ISS ⇔ UUAG ∧ UCEP ∧ UBRS,

on the one hand by allowing time-varying systems and on the other by considering a
more general definition of ISS that incorporates iISS within a unifying framework.

The proof of Theorem 3.2 is inspired in the proofs of Lemma 2.7 of [41] and of
Theorem 5 in [32] and is provided for the sake of completeness in Appendix A.

The proof of our main result, Theorem 3.1, requires the following two lemmas.
The first one shows that under the continuity with respect to the input provided by
Assumption 1, then 0-GUAS ∧ UGB ⇒ UGS. Note that when the input functional
satisfies condition (E), then the latter reads as 0-GUAS ∧ UBEBS⇒ UBEBS0 (Defi-
nition 2.5). The second lemma gives a specific bound for the trajectories of a 0-GUAS
and forward complete system that satisfies Assumption 1.
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Lemma 3.1. Let Σ be a system and let ‖ · ‖U be an admissible functional. Let
Assumption 1 hold. If Σ is 0-GUAS and ‖ · ‖U -UGB then it is ‖ · ‖U -UGS.

The proof of Lemma 3.1 is given in Appendix B.

Lemma 3.2. Let Σ be a forward complete 0-GUAS system endowed with an ad-
missible functional ‖ · ‖U . Let Assumption 1 hold. Then, for every r > 0, η > 0
and T > 0, there exists γ = γ(r, η, T ) > 0 such that if ‖φ(t, t0, x, u)‖X ≤ r for all
t ∈ [t0, t0 + T ] and ‖u‖U ≤ γ then

‖φ(t, t0, x, u)‖X ≤ β(‖x‖X , t− t0) + η, ∀t ∈ [t0, t0 + T ],(3.2)

where β ∈ KL is the function given by the definition of 0-GUAS.

The proof of Lemma 3.2 is given in Appendix C.
We are now ready to provide the proof of our main result.

Proof of Theorem 3.1. (b)⇒ (a) is straightforward. We next prove (a)⇒ (b).
Assume (a). We prove iISS using Theorem 3.2 and taking into account that ISS

means iISS in this case (Definition 2.5) given that the admissible input functional
satisfies condition (E). From Lemma 3.1 we have that Σ is UGS and therefore (Def-
inition 2.5) UBEBS0. Let α, ρ ∈ K∞ be the functions given by the definition of
UGS.

Let T > 0, r > 0 and s > 0. Let t0 ≥ 0, x ∈ X such that ‖x‖X ≤ r and u ∈ U
with ‖u‖U ≤ s. Then, due to UGS we have that for all t ∈ [t0, t0 + T ],

‖φ(t, t0, x, u)‖X ≤ α(‖x‖X ) + ρ (‖u‖U )

≤ α(r) + ρ (s) .

Therefore, C1) holds with C = α(r) + ρ (s).
Let ε > 0. Pick δ > 0 such that α(δ) + ρ (δ) ≤ ε. Then, if t0 ≥ 0, x ∈ X with

‖x‖X ≤ δ and u ∈ U with ‖u‖U ≤ δ, it follows that for all t ≥ t0

‖φ(t, t0, x, u)‖X ≤ α(‖x‖X ) + ρ (‖u‖U )

≤ α(δ) + ρ (δ)

< ε,

and thus C2) holds.
Next, we prove C3). Define ν ∈ K∞ via ν = 2ρ and let ψ = ρ−1 ◦α. Let r ≥ ε > 0,

t0 ≥ 0, x ∈ X be such that ‖x‖X ≤ r and u ∈ U . Distinguish the cases
(i) ‖u‖U ≥ ψ(r); and

(ii) ‖u‖U < ψ(r).
In case (i), we have

‖φ(t, t0, x, u)‖X ≤ α(‖x‖X ) + ρ (‖u‖U )

≤ α(r) + ρ (‖u‖U )

≤ α(ψ−1(‖u‖U )) + ρ (‖u‖U )

= ρ (‖u‖U ) + ρ (‖u‖U )

= 2ρ(‖u‖U )

= ν(‖u‖U )

So, for every ε > 0 and T > 0, it happens that ‖φ(t, t0, x, u)‖X ≤ ε + ν(‖u‖U ) for
every t ≥ t0 + T .
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In case (ii), we have

‖φ(t, t0, x, u)‖X ≤ α(‖x‖X ) + ρ (‖u‖U )

≤ α(r) + ρ (‖u‖U )

≤ α(r) + ρ (ψ(r)) = r̃

So ‖φ(t, t0, x, u)‖X ≤ r̃ for all t ≥ t0. Let ε̃ = α−1(ε) and η = ε̃/2. Pick T̃ > 0 such
that β(r̃, T̃ ) < ε̃/2, where β ∈ KL is given by 0-GUAS. By Lemma 3.2, there exists
γ = γ(r̃, η, T̃ ) > 0 such that (3.2) holds, with T̃ instead of T , provided that ‖u‖U ≤ γ.

Define N =
⌈
ψ(r)
γ

⌉
and T = NT̃ , where dse denotes the smallest integer not less

than s ∈ R.
For i = 0, . . . , N , let ti = t0 + iT̃ . We consider the intervals Ii = (ti, ti+1]

with i = 0, . . . , N − 1 and claim that there exists an integer j ≤ N − 1 for which
‖u(tj ,tj+1]‖U < γ. If such a j did not exist, then from the definition of N and condition

(E), it would follow that ‖u‖U ≥ ‖u(t0,T ]‖U ≥
∑N−1
i=0 ‖u(ti,ti+1]‖U ≥ Nγ ≥ ψ(r), which

contradicts case (ii).
Pick j such that ‖u(tj ,tj+1]‖U < γ and define uj = u(tj ,tj+1] and xj = φ(tj , t0, x, u).

By the causality and semigroup properties, φ(t, t0, x, u) = φ(t, tj , xj , uj) for all t ∈
[tj , tj+1]. Since ‖φ(t, t0, x, u)‖X ≤ r̃ for all t ≥ t0, we have that ‖φ(t, tj , xj , uj)‖X ≤ r̃
for all t ∈ [tj , tj+1]. From the facts that ‖uj‖U ≤ γ and the definition of γ it follows
that if xj+1 = φ(tj+1, tj , xj , uj), then

‖xj+1‖X = ‖φ(tj+1, tj , xj , uj)‖X
≤ β(‖xj‖X , T̃ ) + η

≤ β(r̃, T̃ ) + η

≤ ε̃

2
+
ε̃

2
= ε̃

Therefore, since φ(t, t0, x, u) = φ(t, tj+1, xj+1, u) for all t ≥ tj+1 and recalling the
UGS property, it follows that for all t ≥ t0 + T ≥ tj+1,

‖φ(t, t0, x, u)‖X ≤ α(‖xj+1‖X ) + ρ (‖u‖U )

≤ α(ε̃) + ρ (‖u‖U )

= ε+ ρ (‖u‖U )

≤ ε+ ν (‖u‖U ) .

This shows that C3) is satisfied. By Theorem 3.2, the system Σ is ‖·‖U -ISS and hence
‖ · ‖U -iISS from Definition 2.5.

4. Time-delay systems. In this section, we consider time-delay systems with
inputs. For τ ≥ 0 (where τ is larger than, or equal to, the maximum delay involved in
the dynamics), let C = C ([−τ, 0],Rn) be the set of continuous functions ψ : [−τ, 0]→
Rn endowed with the supremum norm ‖ψ‖ = sup{|ψ(s)| : s ∈ [−τ, 0]}. As usual,
given a continuous function x : [t0 − τ, T )→ Rn and any t0 ≤ t < T , xt is defined as
the function xt : [−τ, 0] → Rn satisfying xt(s) = x(t + s) for all s ∈ [−τ, 0], so that
xt ∈ C.

Consider the system with inputs defined by the following retarded functional
differential equation

ẋ(t) = f(t, xt, u(t))(4.1)
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where t ≥ 0, x(t) ∈ Rn, u(t) ∈ Rm and f : R≥0 × C × Rm → Rn. In this section,
U denotes the set of all the functions u : [0,∞) → Rm that are locally bounded and
Lebesgue measurable.

We assume that f(t, ·, ·) is continuous for every t ≥ 0, that f(·, ψ, µ) is Lebesgue
measurable for every (ψ, µ) ∈ C × Rm, and that for every t0 ≥ 0, ψ ∈ C and u ∈ U ,
there exists a unique maximally defined continuous function x : [t0−τ, t(t0,ψ,u))→ Rn,
with t(t0,ψ,u) > t0 and xt0 = ψ, that is locally absolutely continuous on [t0, t(t0,ψ,u))
and satisfies equation (4.1) for almost all t ∈ [t0, t(t0,ψ,u)).

Under these assumptions, take X = C, ‖ · ‖X = ‖ · ‖ and define the map φ :
Dφ → X , with Dφ = {(t, s, ψ, u) ∈ R≥0 × R≥0 × C × U : s ≤ t < t(s,ψ,u)} and
φ(t, s, ψ, u) = xt, where x : [s − τ, t(s,ψ,u)) → Rn is the unique maximally defined
solution of (4.1) corresponding to the initial time s, the initial state ψ and input u.
Then, ΣR = (X ,U , φ) is a system as per Definition 2.1.

For a system of the form (4.1), the 0-GUAS, UBEBS, and iISS properties are
usually defined as follows (see e.g. [5]).

Definition 4.1. The time-delay system (4.1) is:
1. 0-GUAS if there exists β ∈ KL such that the solution x(·) corresponding to

any t0 ≥ 0, ψ ∈ C and u = 0 satisfies

|x(t)| ≤ β(‖ψ‖, t− t0) ∀t ≥ t0;(4.2)

2. UBEBS if there exist α, ρ, κ ∈ K∞ and c ≥ 0 such that

|x(t)| ≤ α(‖ψ‖) + ρ(‖u‖κ) + c ∀t ≥ t0;(4.3)

3. iISS if there exist β ∈ KL and ρ, κ ∈ K∞ such that

|x(t)| ≤ β(‖ψ‖, t− t0) + ρ(‖u‖κ) ∀t ≥ t0.(4.4)

In (4.3) and (4.4), x(·) is the solution corresponding to initial time t0 ≥ 0, initial state
ψ ∈ C and input u ∈ U , and κ is referred to as the UBEBS or iISS gain, respectively.

These definitions are equivalent to those corresponding to Definitions 2.4 and 2.5,
as we next show.

Proposition 4.1. Consider a time-delay system of the form (4.1) and its corre-
sponding system ΣR as defined above. Then,
a) System (4.1) is 0-GUAS as per Definition 4.1 ⇔ ΣR is 0-GUAS as per Defini-

tion 2.4.
b) System (4.1) is UBEBS as per Definition 4.1 ⇔ ΣR is UBEBS as per Defini-

tions 2.5 and 2.4.
c) System (4.1) is iISS as per Definition 4.1 ⇔ ΣR is iISS as per Definitions 2.5

and 2.4.

Proof. The if parts are a direct consequence of the fact that |x(t)| ≤ ‖xt‖. We
next prove the only if parts. The only if part of item b) is also straightforward, since
if (4.3) holds, then the same equation holds with ‖xt‖ instead of |x(t)| and with the
function α̃, defined by α̃(r) = α(r) + r, in place of α.

Suppose that system (4.1) is iISS as per Definition 4.1 and let β ∈ KL and ρ ∈ K∞
be as in (4.4). Without loss of generality we can suppose that β(r, 0) ≥ r for all r ≥ 0.
By Sontag’s Lemma on KL-functions [39, Prop. 7], there exist α1, α2 ∈ K∞ such that
β(r, t) = α2(α1(r)e−t) for all r, t ≥ 0. Define β̃(r, t) = α2(eτα1(r)e−t), then β̃ ∈ KL
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and β ≤ β̃. Suppose that x(·) satisfies (4.4). If t ≥ t0 + τ , then for all s ∈ [−τ, 0]

|x(t+ s)| ≤ β(‖ψ‖, t+ s− t0) + ρ(‖u‖κ)

≤ β(‖ψ‖, t− t0 − τ) + ρ(‖u‖κ)

≤ α2(eτα1(‖ψ‖)e−(t−t0)) + ρ(‖u‖κ)

≤ β̃(‖ψ‖, t− t0) + ρ(‖u‖κ).

Hence ‖xt‖ ≤ β̃(‖ψ‖, t − t0) + ρ(‖u‖κ) for all t ≥ t0 + τ . If t0 ≤ t < t0 + τ , for all
s ∈ [−τ, 0]

|x(t+ s)| ≤ β(‖ψ‖, 0) + ρ(‖u‖κ)

≤ α2(α1(‖ψ‖)) + ρ(‖u‖κ)

≤ α2(eτα1(‖ψ‖)e−(t−t0)) + ρ(‖u‖κ)

≤ β̃(‖ψ‖, t− t0) + ρ(‖u‖κ).

In this case, we have that ‖xt‖ ≤ β̃(‖ψ‖, t− t0) +ρ(‖u‖κ) for all t0 ≤ t < t0 + τ . Thus
ΣR is iISS as per Definitions 2.5 and 2.4.

The only if part of item a) can be proved in the same way.

Assumption 2 gives sufficient conditions on the function f in (4.1) for iISS to be
equivalent to 0-GUAS ∧ UBEBS.

Assumption 2. The function f in (4.1) satisfies the following conditions.
(R1) There exists γ ∈ K∞ and N : R≥0 → R>0 non-decreasing such that

|f(t, ψ, µ)| ≤ N(‖ψ‖) (1 + γ(|µ|))

for all t ≥ 0, for every ψ ∈ C and for all µ ∈ Rm.
(R2) For every r > 0 and ε > 0, there exists δ > 0 such that for all t ≥ 0, it is

true that

|f(t, ψ, µ)− f(t, ψ, 0)| < ε

if ‖ψ‖ ≤ r and |µ| ≤ δ.
(R3) f(t, ψ, 0) is Lipschitz in ψ on bounded sets, uniformly in t ≥ 0, i.e., for all

r > 0 there exists L = L(r) such that |f(t, ψ, 0) − f(t, ϕ, 0)| ≤ L‖ψ − ϕ‖ for
all t ≥ 0 whenever ‖ψ‖ ≤ r and ‖ϕ‖ ≤ r.

The following lemma, whose proof can be obtained, mutatis mutandis, from that of
Lemma 1 in [8], asserts that Assumption 2 holds if f(t, 0, 0) = 0 for all t ≥ 0 and f
satisfies a Lipschitz condition on bounded sets.

Lemma 4.1. Suppose that f : R≥0×C×Rm → Rn is Lipschitz on bounded subsets
of C × Rm, uniformly in t, i.e. for all r ≥ 0 there exists L = L(r) ≥ 0 such that for
all ψ, θ ∈ C such that ‖ψ‖ ≤ r and ‖θ‖ ≤ r and all µ, ν ∈ Rm with |µ| ≤ r and |ν| ≤ r
we have that

|f(t, ψ, µ)− f(t, θ, ν)| ≤ L(‖ψ − θ‖+ |µ− ν|) ∀t ≥ 0.

Suppose in addition that f(t, 0, 0) = 0 for all t ≥ 0. Then f satisfies Assumption 2.

Theorem 4.1. Consider system (4.1) and let Assumption 2 hold. Let γ ∈ K∞ be
given by (R1). Then, the following hold.
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a) If system (4.1) is iISS with gain κ, then it is 0-GUAS and UBEBS with gain
κ.

b) If system (4.1) is 0-GUAS and UBEBS with gain α, then it is iISS with gain
κ = max{α, γ}.

The proof of Theorem 4.1 is a consequence of Theorem 3.1 and the following lemma.

Lemma 4.2. Let Assumption 2 hold and let γ ∈ K be given by (R1). Then, system
ΣR satisfies Assumption 1 with ‖ · ‖U = ‖ · ‖γ .

The proof of Lemma 4.2 is provided in Appendix D.

Proof of Theorem 4.1. Part a) is straightforward; we next prove b).
Assume that (4.1) is 0-GUAS and UBEBS with gain α. Let κ = max{α, γ} ∈ K∞.

Then, (4.1) is also UBEBS with gain κ because ‖u‖α ≤ ‖u‖κ for all u ∈ U . By
Proposition 4.1, ΣR is ‖ · ‖κ-UBEBS and 0-GUAS. From Lemma 4.2, ΣR satisfies
Assumption 1 with ‖ · ‖U = ‖ · ‖γ , and hence also with ‖ · ‖U = ‖ · ‖κ. By Theorem 3.1,
ΣR is then ‖ · ‖κ-iISS and, by Proposition 4.1, (4.1) is iISS with gain κ.

The equivalence between 0-GUAS ∧ UBEBS and iISS has been proved recently in [5,
Thm. 2] for time-invariant time-delay systems under the stronger hypothesis that the
function f(xt, u) is Lipschitz on bounded subsets of C×Rm [5, Standing assumption 1].
The proof of the equivalence is there based on the existence of a time-invariant,
Lipschitz on bounded subsets and coercive Lyapunov-Krasovskii functional (LKF) V
for the zero-input system f(xt, 0) [37], which is then employed for the system with
inputs [5, Proposition 3]. Since the concept of derivative of V considered in [5] is
that of Driver, the Lipschitz condition on f is therein essential for establishing the
equivalence between 0-GUAS ∧ UBEBS and iISS. The fact that a) ⇔ e) in [5, Thm.
2] becomes then a corollary of Theorem 4.1. In view of Lemma 4.1, the assumptions
of Theorem 4.1 are clearly weaker than those of [5, Thm. 2].

By simplifying the analysis of iISS into the separate evaluation of 0-GUAS and
UBEBS, Theorem 4.1 also allows to more easily conclude that if the function f in (4.1)
is time-invariant and Lipschitz on bounded subsets, then the existence of an iISS LKF
with pointwise dissipation (as per [5]) implies that the time-delay system is iISS,
which is one of the important results in [5]. Moreover, Theorem 4.1 shows that this
implication still holds for time-invariant systems satisfying the weaker Assumption 2,
if the derivative of V is considered in the usual sense instead of Driver’s.

5. Semilinear systems. In this section, we apply our main result to obtain a
characterization of iISS for a semilinear system of the form

ẋ(t) = Ax(t) + f(t, x(t), u(t))

x(t0) = x0
(5.1)

where t ≥ 0, x(t) ∈ X , X a Banach space with norm ‖ · ‖X , u(t) ∈ U, with U a
normed space with norm ‖ · ‖U. The operator A : D(A) ⊆ X → X is a linear operator
that generates a strongly continuous semigroup (a C0-semigroup) T : R≥0 → L(X ),
where L(X ) is the set of all the linear and bounded operators from X to X , and
f : R≥0 × X × U → X . The set U of admissible inputs is the set of all the piecewise
continuous functions u : R≥0 → U.

Given t0 ≥ 0, x0 ∈ X and u ∈ U , consider the weak solutions of (5.1). A function
x : J → X , with J = [t0, τ) or [t0, τ ] is a weak solution of (5.1) if it is continuous and

x(t) = T (t− t0)x0 +

∫ t

t0

T (t− s)f(s, x(s), u(s)) ds, ∀t ∈ J
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where the concept of integral is that of Bochner [4].

5.1. Semilinear systems: general results. The following assumptions on f
are required.

Assumption 3. The function f in (5.1) satisfies the following conditions.
(SL1) f is piecewise continuous in t and continuous in its other variables in the

following sense. There exists a strictly increasing and unbounded sequence of
positive times {τk}∞k=1 and continuous functions fk : [τk, τk+1]×X ×U→ X ,
k = 0, 1, . . . with τ0 = 0, such that f = fk on [τk, τk+1)×X × U.

(SL2) f(t, ξ, µ) is Lipschitz in ξ on bounded sets, uniformly for all t and for µ in
bounded sets, i.e., for all r > 0 there exists L = L(r) ≥ 0 such that, for all
ξ, ω ∈ X such that ‖ξ‖X ≤ r, ‖ω‖X ≤ r, all µ ∈ U such that ‖µ‖U ≤ r and
all t ≥ 0, it holds that

‖f(t, ξ, µ)− f(t, ω, µ)‖X ≤ L‖ξ − ω‖X .

(SL3) There exists γ ∈ K∞ and N : R≥0 → R>0 non-decreasing such that

‖f(t, ξ, µ)‖X ≤ N(‖ξ‖X ) (1 + γ(‖µ‖U))

for all t ≥ 0, ξ ∈ X and µ ∈ U.
(SL4) For every r > 0 and ε > 0, there exists δ > 0 such that for all t ≥ 0, it is

true that

‖f(t, ξ, µ)− f(t, ξ, 0)‖X < ε

if ‖ξ‖X ≤ r and ‖µ‖U ≤ δ.
When f(t, ξ, µ) is Lipschitz in (ξ, µ) on bounded sets and satisfies f(t, 0, 0) ≡ 0, it
can be proved, similarly to the proof of Lemma 4.1, that f satisfies (SL2)–(SL4) of
Assumption 3. This is made more precise as follows.

Lemma 5.1. Suppose that f : R≥0 × X × U→ X is Lipschitz on bounded subsets
of X × U uniformly over R≥0, i.e. for all r ≥ 0 there exists L = L(r) ≥ 0 such that
for all ξ, ζ ∈ X such that ‖ξ‖X ≤ r and ‖ζ‖X ≤ r and all µ, ν ∈ U with ‖µ‖U ≤ r and
‖ν‖U ≤ r we have that

‖f(t, ξ, µ)− f(t, ζ, ν)‖X ≤ L(‖ξ − ζ‖X + ‖µ− ν‖U) ∀t ≥ 0.

Suppose in addition that f(t, 0, 0) = 0 for all t ≥ 0. Then f satisfies (SL2)–(SL4) of
Assumption 3.

Under (SL1)–(SL3) of Assumption 3 and the fact that the admissible inputs u are
piecewise continuous, a slight modification of [4, Prop. 4.3.3] to allow piecewise conti-
nuity proves that for every t0 ≥ 0, x0 ∈ X and u ∈ U there exists a unique maximally
defined weak solution x : [t0, t(t0,x0,u))→ X of (5.1).

Defining the map φ : Dφ → X , with Dφ = {(t, t0, x0, u) ∈ R≥0 × R≥0 × X × U :
t0 ≤ t < t(t0,x0,u)} and φ(t, t0, x0, u) = x(t) with x : [t0, t(t0,x0,u)) → X the unique
maximally defined weak solution of (5.1), we have that ΣSL = (X ,U , φ), which will be
referred to as the system generated by (5.1), is a system according to Definition 2.1.
The following Lemma asserts that ΣSL satisfies Assumption 1 if Assumption 3 holds.
The proof is provided in Appendix E.
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Lemma 5.2. Consider the semilinear system (5.1), let Assumption 3 hold, let
γ ∈ K∞ be the function from (SL3), and let ΣSL be the system generated by (5.1).
Then, ΣSL satisfies Assumption 1 with ‖ · ‖U = ‖ · ‖γ .

The following characterization of iISS can be proved almost identically as Theorem 4.1,
but invoking Lemma 5.2 instead of Lemma 4.2.

Theorem 5.1. Let ΣSL be the system generated by equation (5.1). Suppose that
Assumption 3 holds and let γ ∈ K∞ be the function coming from (SL3) of such
assumption. Then the following hold.

a) If system ΣSL is iISS with iISS-gain κ, then ΣSL is 0-GUAS and UBEBS
with gain κ.

b) If system ΣSL is 0-GUAS and UBEBS with UBEBS-gain α, then ΣSL is iISS
with gain κ = max{α, γ}.

5.2. Semilinear systems: generalized bilinear form. The much stronger
result that 0-GUAS on its own is equivalent to iISS (Theorem 5.2) can be obtained
when Assumption 3 is replaced by the following stronger condition, which replaces
(SL3)–(SL4) by a bound on ‖f(t, ξ, µ)‖X of a specific, affine-in-‖ξ‖X form.

Assumption 4. Let f in (5.1) satisfy (SL1) and (SL2) of Assumption 3, jointly
with the bound

‖f(t, ξ, µ)‖X ≤ (K‖ξ‖X + d)γ(‖u‖U) ∀ξ ∈ X , µ ∈ U(5.2)

for some constants K, d ∈ R≥0 and some γ ∈ K∞.

If a nonlinear function f satisfies Assumption 4, then (SL3) of Assumption 3 holds
with N(r) = Kr + d and the same function γ, and (SL4) follows directly from (5.2),
since f(t, ξ, 0) = 0 for all (t, ξ) ∈ R≥0 ×X .

Examples of functions satisfying Assumption 4 are those of the form f(t, ξ, µ) =
B(t)µ+ C(t, ξ, µ), where B : R≥0 → L(U,X ) is piecewise continuous, C : R≥0 ×X ×
U→ X is piecewise continuous in t and C(t, ·, ·) is bilinear, and there exist constants
K, d ≥ 0 such that ‖B(t)‖ ≤ d and sup‖x‖X=1,‖u‖U=1 ‖C(t, ξ, µ)‖X ≤ K for all t ≥ 0.
In this case (5.2) is satisfied with these values of K and d, and with γ(r) = r.

Recall that the semigroup T (·) generated by the operator A is exponentially stable
if ‖T (t)‖ ≤ Me−λt for some M ≥ 1 and λ > 0, where ‖T (t)‖ denotes the induced
norm of the operator T (t). Also, exponential stability of T (·) is equivalent to GUAS
of the system ẋ = Ax [6, Prop. 3].

Theorem 5.2. Consider a semilinear system (5.1) that satisfies Assumption 4.
Then, the following are equivalent.
a) System (5.1) is iISS.
b) System (5.1) is 0-GUAS.

Proof. . Since a) ⇒ b) is trivial, we prove b) ⇒ a). Suppose that the system is
0-GUAS. Then the semigroup T (·) is exponentially stable. Let M ≥ 1 and λ > 0 so
that ‖T (t)‖ ≤ Me−λt for all t ≥ 0, where ‖T (t)‖ denotes the induced norm of the
operator T (t). In the remainder of this proof, we omit the subscripts in the norms
‖ · ‖X and ‖ · ‖U in order to avoid cluttered notation and because these can be inferred
from the context.

Let t0 ≥ 0, x0 ∈ X , u ∈ U and x(·) be the corresponding trajectory. Let
[t0, t(t0,x0,u)) be the maximal interval of definition of x(·). Suppose without loss of
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generality that ‖u‖ <∞. Then, for all t0 ≤ t < t(t0,x0,u),

x(t) = T (t− t0)x0 +

∫ t

t0

T (t− s)f(s, x(s), u(s))ds.

Take the norm at both sides of the equality and apply the triangle inequality and the
properties of the norm of the integral to obtain

‖x(t)‖ ≤ ‖T (t− t0)‖‖x0‖+

∫ t

t0

‖T (t− s)‖‖f(s, x(s), u(s))‖ds

≤Me−λ(t−t0)‖x0‖+

∫ t

t0

Me−λ(t−s)(K‖x(s)‖+ d)γ(‖u(s)‖)ds.

Multiply both sides by eλ(t−t0) and define z(t) = eλ(t−t0)‖x(t)‖, so that

z(t) ≤M‖x0‖+Md

∫ t

t0

eλ(s−t0)γ(‖u(s)‖)ds+

∫ t

t0

MKγ(‖u(s)‖)z(s)ds.

Then, for t0 ≤ t ≤ τ < t(t0,x0,u)

z(t) ≤M‖x0‖+Md

∫ τ

t0

eλ(τ−t0)γ(‖u(s)‖)ds+MK

∫ t

t0

γ(‖u(s)‖)z(s)ds.

By applying Gronwall’s Lemma on the interval [t0, τ ] it follows that

z(τ) ≤M
[
‖x0‖+ d

∫ τ

t0

eλ(τ−t0)γ(‖u(s)‖)ds
]
e
MK

∫ τ
t0
γ(‖u(s)‖)ds

.

Recalling the definition of z, multiplying both sides by e−λ(τ−t0), and taking into
account that

∫ τ
t0
γ(‖u(s)‖)ds ≤ ‖u‖γ and e−λ(τ−t0) ≤ 1 for all τ ≥ t0, then also for all

τ ∈ [t0, t(t0,x0,u)) we have

‖x(τ)‖ ≤M [‖x0‖+ d‖u‖γ ]eMK‖u‖γ

≤ ‖x0‖
2

2
+
M2e2MK‖u‖γ

2
+Md‖u‖γeMK‖u‖γ

where we have used the fact that ab ≤ a2

2 + b2

2 setting a = ‖x0‖ and b = MeMK‖u‖γ .

Defining α(r) = r2

2 , ρ(r) = M2(e2MKr−1)
2 + MdreMKr and c = M2

2 , we have that
α, ρ ∈ K∞ and

‖x(τ)‖ ≤ α(‖x0‖) + ρ(‖u‖γ) + c ∀τ ∈ [t0, t(t0,x0,u)).

If t(t0,x0,u) < ∞, we have that u(·) is bounded on [t0, t(t0,x0,u)), so that ru :=
supt∈[t0,t(t0,x0,u))

‖u(t)‖ < ∞. We claim that F (t, ξ) = f(t, ξ, u(t)) is Lispchitz in

ξ on bounded sets, uniformly in t ∈ [t0, t(t0,x0,u)), with a Lipschitz constant that may
depend on ru. To see this, let r > 0 and select L = L(max{r, ru}) from (SL2), so that
the function F satisfies

‖F (t, ξ)− F (t, ω)‖ = ‖f(t, ξ, u(t))− f(t, ω, u(t))‖ ≤ L‖ξ − ω‖

for all t ∈ [t0, t(t0,x0,u)), whenever ‖ξ‖X ≤ r, ‖ω‖X ≤ r. This proves the claim.
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Since t(t0,x0,u) < ∞ and F (t, ξ) satisfies this Lipschitz condition, then a slight
variation of [4, Thm.4.3.4] implies that x(·) is unbounded on [t0, t(t0,x0,u)). This is a
contradiction showing that t(t0,x0,u) < ∞ is not possible. Then, t(t0,x0,u) = ∞ and
the corresponding system ΣSL is UBEBS as per Definitions 2.4 and 2.5. The iISS of
the system then follows from Theorem 5.1.

Theorem 5.2 generalizes [30, Theorem 4.2] to the time-varying case. The proof
given here is based on the general characterization (1.1), while that in [30] uses an
ad hoc method. A recent result dealing with the relationship between ISS and iISS
for generalized bilinear time-invariant systems, allowing for unbounded (linear) input
operators is given in [13]. The results in the current paper are neither a special case
nor more general than those of [13].

6. Conclusions. The equivalence between integral input-to-state stability (iISS)
and the combination of global uniform asymptotic stability under zero input (0-
GUAS) with uniformly bounded-energy input/bounded state (UBEBS) was estab-
lished for systems defined in abstract form, provided a reasonable assumption of
continuity of the trajectories with respect to the input, at the zero input, is satisfied
and employing a more general definition of iISS. Sufficient conditions for this assump-
tion to be satisfied were given for time-delay systems and for semilinear evolution
equations over Banach spaces. The abstract definition of system employed allows for
time-varying infinite-dimensional systems whose solutions are unique. It is expected
that our main result could be helpful in (a) establishing the equivalence for other spe-
cific classes of infinite-dimensional systems, such as semilinear systems over Banach
spaces involving unbounded input operators, for which very few results are currently
available, and (b) giving mild conditions under which ISS implies iISS, as done for
finite-dimensional systems in [9].

Appendix A. Proof of Theorem 3.2.
Suppose that the system Σ is ‖ ·‖U -ISS and let β ∈ KL and ρ ∈ K∞ the functions

characterizing this stability property.
Let T > 0, r > 0 and s > 0. Let t0 ≥ 0, x ∈ Br and u ∈ U be such that ‖u‖U ≤ s.

Then for all t ≥ t0
‖φ(t, t0, x, u)‖X ≤ β(‖x‖X , t− t0) + ρ(‖u‖U )

≤ β(r, t− t0) + ρ(‖u‖U )

≤ β(r, 0) + ρ(s).

Thus Σ satisfies C1) with C = β(r, 0) + ρ (s).
To prove C2), take δ = α−1(ε) with α(·) = β(·, 0) + ρ(·) ∈ K∞. Indeed, if t0 ≥ 0,

‖u‖U ≤ δ and ‖x‖X ≤ δ we have that

‖φ(t, t0, x, u)‖X ≤ β(‖x‖X , t− t0) + ρ(‖u‖U )

≤ β(δ, t− t0) + ρ(‖u‖U )

≤ β(δ, 0) + ρ (δ)

= α(δ) = ε.

As for C3), let 0 < ε ≤ r. Since β(r, t) → 0 as t → ∞ then there exists T > 0
such that for all t ≥ T we have that β(r, t) ≤ ε. Let t0 ≥ 0, x ∈ Br and u ∈ U . Then,
for all t ≥ t0 + T ,

‖φ(t, t0, x, u)‖X ≤ β(‖x‖X , t− t0) + ρ(‖u‖U )

≤ β(r, T ) + ρ(‖u‖U ) ≤ ε+ ρ(‖u‖U )
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and therefore C3) holds with ν = ρ.
Conversely, suppose that Σ satisfies C1)–C3).
Let r ≥ 1. By C3) with ε = 1 there exists T1 > 0 such that if t0 ≥ 0, ‖x‖X ≤ r

and u ∈ U , then ‖φ(t, t0, x, u)‖X ≤ 1 + ν (‖u‖U ) for all t ≥ t0 + T1. If, in addition,
‖u‖U ≤ r, then ‖φ(t, t0, x, u)‖X ≤ 1 + ν (r) for all t ≥ t0 + T1.

From C1), there exists a C > 0 such that ‖φ(t, t0, x, u)‖X ≤ C if t ∈ [t0, t0 + T1],
‖x‖X ≤ r and ‖u‖U ≤ r. Therefore, ‖φ(t, t0, x, u)‖X ≤ max{C, 1 + ν (r)} ≤ 1 + C +
ν (r) for all t ≥ t0 ≥ 0, x ∈ X such that ‖x‖X ≤ r and all u ∈ U such that ‖u‖U ≤ r.

Define for r ≥ 0,

ϕ(r) := sup {‖φ(t, t0, x, u)‖X : 0 ≤ t0 ≤ t, ‖x‖X ≤ r, ‖u‖U ≤ r} .

Note that ϕ is clearly nondecreasing and, by the previous analysis, ϕ(r) is finite for
every r ≥ 1. Then, ϕ(r) is finite for every r ≥ 0. By C2), it straightforwardly follows
that ϕ(r) → 0 as r → 0+. Then, there exists ϕ̂ ∈ K∞ such that ϕ ≤ ϕ̂. Therefore
‖φ(t, t0, x, u)‖X ≤ ϕ(max{‖x‖X , ‖u‖U}) ≤ ϕ̂(‖x‖X ) + ϕ̂(‖u‖U ) for all x ∈ X , u ∈ U
and t ≥ t0 ≥ 0. It follows that for all t ≥ t0 ≥ 0, all x ∈ X such that ‖x‖X ≤ r and
all u ∈ U we have ‖φ(t, t0, x, u)‖X ≤ ϕ̂(r) + ϕ̂(‖u‖U ). Then, for all t ≥ t0 ≥ 0, all
x ∈ X such that ‖x‖X ≤ r and all u ∈ U ,

‖φ(t, t0, x, u)‖X ≤ ϕ̂(r) + ϕ̂(‖u‖U ).(A.1)

From (A.1) and C3), by proceeding as in the proof of Lemma 8 in [32] or as in that
of Lemma 2.7 in [41], it follows that there exists a function β ∈ KL for which the
estimate

‖φ(t, t0, x, u)‖X ≤ β(‖x‖X , t− t0) + ρ(‖u‖U )

holds with ρ := max{ν, ϕ̂}. Hence the system Σ is ISS.

Appendix B. Proof of Lemma 3.1.
Let α, ρ and c as in the definition of UGB. For r ≥ 0, define

α̃(r) = sup{‖φ(t, t0, x, u)‖X : 0 ≤ t0 ≤ t, ‖x‖X ≤ r and ‖u‖U ≤ r}

The function α̃ is non-decreasing and finite by the UGB property.
Next, we prove that lim

r→0+
α̃(r) = 0. Define r∗ = ρ(1) + α(1) + c and let β ∈ KL

be the function characterizing 0-GUAS. For a given ε > 0, take δ1 ∈ (0, 1) so that
δ1 ≤ β(δ1, 0) < ε

2 and T > 0 such that β(δ1, T ) < δ1
2 . Define η = δ1

2 and let
γ = γ(r∗, η, T ) be the constant coming from Lemma 3.2. Induction will be used to
prove that for every x0 ∈ X such that ‖x0‖X ≤ δ1, every 0 ≤ t0 ≤ t, and every u ∈ U
with ‖u‖U ≤ γ, then ‖φ(t, t0, x0, u)‖X < ε for all t ≥ t0.

For i ∈ N, define ti := t0+iT and xi := φ(ti, t0, x, u). We have ‖φ(t, t0, x0, u)‖X ≤
r∗ for all t ≥ t0. Apply Lemma 3.2 to obtain

‖φ(t, t0, x0, u)‖X ≤ β(‖x0‖X , t− t0) + η ≤ β(δ1, 0) + η

≤ ε

2
+ η =

ε

2
+
δ1
2

<
ε

2
+
ε

2
= ε

for all t ∈ [t0, t0+T ] = [t0, t1]. In addition, ‖x1‖X = ‖φ(t1, t0, x, u)‖X ≤ β(δ1, T )+η <
δ1
2 + δ1

2 = δ1.
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Next, suppose that ‖xi‖ ≤ δ1. Using the fact that φ(t, ti, xi, u) = φ(t, t0, x0, u)
for all t ≥ ti, repeating the latter reasoning we obtain ‖φ(t, t0, x0, u)‖X ≤ ε for
all t ∈ [ti, ti+1] and ‖xi+1‖ = ‖φ(ti+1, t0, x, u)‖X ≤ δ1. In consecuence, induction
establishes that ‖φ(t, t0, x0, u)‖X < ε for all t ≥ t0 ≥ 0, x0 ∈ X , and u ∈ U , provided
that ‖x0‖X ≤ δ and ‖u‖U ≤ δ, with δ = min{δ1, γ}. By definition of α̃, it follows
that for every ε > 0 there exists δ > 0 such that α̃(r) ≤ α̃(δ) < ε for every 0 < r < δ.
This proves that lim

r→0+
α̃(r) = 0.

Since α̃ is non-decreasing and lim
r→0+

α̃(r) = 0, there exists α̂ ∈ K∞ such that

α̂(r) ≥ α̃(r) for all r ≥ 0. Let 0 ≤ t0 ≤ t, x ∈ X , and u ∈ U . From the definition of α̃
and the fact that α̂(r) ≥ α̃(r), it follows that

‖φ(t, t0, x, u)‖X ≤ α̂(‖x‖X ) + α̂(‖u‖U )

Consequently, the system is ‖ ·‖U -UGS because (2.3) holds with c = 0 and α = ρ = α̂.

Appendix C. Proof of Lemma 3.2.
Suppose that system Σ is 0-GUAS and let β ∈ KL so that (2.1) holds. Let r > 0,

η > 0, T > 0. Set r∗ = β(r, 0) and note that r ≤ r∗. Let δ = δ(r∗, η, T ) be the
positive constant given by Assumption 1 with r∗ instead of r and η instead of ε.

Suppose that ‖φ(t, t0, x, u)‖X ≤ r for all t ∈ [t0, t0 + T ] and that ‖u‖U ≤ δ.
Then, ‖φ(t, t0, x,0)‖U ≤ β(r, 0) ≤ r∗ for all t ∈ [t0, t0 + T ]. The definition of δ and
Assumption 1 imply that

‖φ(t, t0, x, u)− φ(t, t0, x,0)‖X ≤ η ∀t ∈ [t0, t0 + T ].

Thus

‖φ(t, t0, x, u)‖X ≤ ‖φ(t, t0, x,0)‖X + ‖φ(t, t0, x, u)− φ(t, t0, x,0)‖X
≤ β(‖x‖X , t− t0) + η.

and the proof concludes taking γ = δ.

Appendix D. Proof of Lemma 4.2. The proof of Lemma 4.2 employs the
following version of Gronwall Lemma.

Lemma D.1. Let ψ : [t0−τ, t]→ R be continuous and nonnegative and let K,L ≥
0 be such that

ψ(`) ≤ K + L

∫ `

t0

‖ψs‖ds ∀` ∈ [t0, t],

where ψs ∈ C([−τ, 0],R) is the function defined by ψs(r) = ψ(r+ s) for all r ∈ [−τ, 0]
and ‖ · ‖ is the supremum norm. Then,

‖ψ`‖ ≤ (K + ‖ψt0‖) eL(`−t0) ∀` ∈ [t0, t].

Proof. Define for ` ∈ [t0, t], ϕ(`) = ‖ψ`‖ and Φ(`) = K +L
∫ `
t0
‖ψs‖ds. Note that

ϕ is nonnegative and continuous and that Φ is nondecreasing. For every ` ∈ [t0, t] and
any s ∈ [−τ, 0] we have that ψ`(s) = ψ(s+ `) ≤ Φ(s+ `) ≤ Φ(`) when s+ ` ≥ t0 and
that ψ`(s) = ψ(s+ `) ≤ ‖ψt0‖ when s+ ` < t0. In consequence, ϕ(`) ≤ ‖ψt0‖+ Φ(`)
for all ` ∈ [t0, t] and hence

ϕ(`) ≤ ‖ψt0‖+K + L

∫ `

t0

ϕ(s)ds.



IISS CHARACTERIZATION FOR INFINITE-DIMENSIONAL SYSTEMS 19

Applying the standard Gronwall inequality yields

ϕ(`) = ‖ψ`‖ ≤ (K + ‖ψt0‖) eL(`−t0) ∀` ∈ [t0, t],

which establishes the result.

The following lemma employs this version of Gronwall’s inequality to give a bound
on the difference between specific solutions.

Lemma D.2. Suppose that f in (4.1) satisfies Assumption 2 and let γ be given by
(R1). Then, for every r > 0 and η > 0 there exist L = L(r) and k = k(r, η) such that
if x(·) and z(·) are the maximally defined solutions of (4.1) corresponding to initial
time t0 ≥ 0, initial state ψ0 ∈ C and, respectively, inputs u ∈ U and 0 ∈ U , and if for
some time t∗ > t0 it happens that ‖xt‖ ≤ r and ‖zt‖ ≤ r for all t ∈ [t0, t

∗], then it
also happens that

‖xt − zt‖ ≤
[
η(t− t0) + k

∫ t

t0

γ(|u(s)|) ds
]
eL(t−t0) t ∈ [t0, t

∗].(D.1)

Proof. For every s ≥ 0 define BCs = {ψ ∈ C : ‖ψ‖ ≤ s} and Bms = {ξ ∈ Rm : |ξ| ≤
s}.

The following claim is analogous to that in the proof of [8, Lemma 3].

Claim D.1. For every r > 0 and η > 0, there exists k = k(r, η) > 0 such that for
all t ≥ 0, ψ ∈ BCr and µ ∈ Rm

|f(t, ψ, µ)− f(t, ψ, 0)| ≤ η + kγ(|µ|).

Proof of the claim. Let r > 0 and η > 0 and take δ ∈ (0, 1) from (R2) in As-
sumption 2, such that for all t ≥ 0 and (ψ, µ) ∈ BCr × Bmδ then

|f(t, ψ, µ)− f(t, ψ, 0)| < η.

If ψ ∈ BCr and |µ| ≥ δ, from (R1) in Assumption 2, it follows that

|f(t, ψ, µ)− f(t, ψ, 0)| ≤ |f(t, ψ, µ)|+ |f(t, ψ, 0)|
≤ N(‖ψ‖) +N(‖ψ‖)γ(|µ|) +N(‖ψ‖)
= 2N(‖ψ‖) +N(‖ψ‖)γ(|µ|)
≤ N(r)[2 + γ(|µ|)]

= N(r)

[
2

γ(|µ|)
+ 1

]
γ(|µ|)

≤ N(r)

[
2

γ(δ)
+ 1

]
γ(|µ|).

By taking k = N(r)
[

2
γ(δ) + 1

]
we then have that for all t ≥ 0, ψ ∈ BCr and µ ∈ Rm,

|f(t, ψ, µ)− f(t, ψ, 0)| ≤ η + kγ(|µ|)

and the claim follows.

Let r > 0, η > 0, and let L = L(r) be given by (R3) in Assumption 2. Let
k = k(r, η) be given by Claim D.1 and let t0, t∗, ψ, u, x(·) and z(·) be as in the
statement of Lemma D.2. Let t0 ≤ t ≤ t∗. Since for ` ∈ [t0, t],

x(`) = x(t0) +

∫ `

t0

f(s, xs, u(s)) ds
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and

z(`) = x(t0) +

∫ `

t0

f(s, zs, 0) ds

it follows that for all ` ∈ [t0, t],

|x(`)− z(`)| ≤
∫ `

t0

|f(s, xs, u(s))− f(s, zs, 0)|ds

≤
∫ `

t0

|f(s, xs, u(s))− f(s, xs, 0)|ds+

∫ `

t0

|f(s, xs, 0)− f(s, zs, 0)|ds

≤
∫ `

t0

η + kγ(|u(s)|)ds+ L

∫ `

t0

‖xs − zs‖ds

≤ η(`− t0) + k

∫ `

t0

γ(|u(s)|)ds+ L

∫ `

t0

‖xs − zs‖ds

Let ϕ(`) = |x(`)− z(`)| for ` ∈ [t0 − τ, t]. Then, for all ` ∈ [t0, t],

ϕ(`) ≤ η(t− t0) + k

∫ t

t0

γ(|u(s)|)ds+

∫ `

t0

L‖ϕs‖ds.

Applying Lemma D.1 to ϕ with K = η(t − t0) + k
∫ t
t0
γ(|u(s)|)ds, and taking into

account that ϕt0 ≡ 0 because xt0 = zt0 = ψ0, then (D.1) follows, concluding the proof
of Lemma D.2.

Proof of Lemma 4.2. Given r > 0, ε > 0 and T > 0, let L = L(r) be given by
Lemma D.2. Pick η > 0 sufficiently small such that ηTeLT < ε/2 and let k = k(r, η)
be given by Lemma D.2. Pick δ > 0 such that kδeLT < ε/2.

Suppose that for t0 ≤ t∗ ≤ t0 + T , ψ ∈ C and u ∈ U such that ‖u‖γ < δ, the
maximal solutions x(·) and z(·) of (4.1) corresponding to t0, ψ and inputs u and
0, respectively, are defined on [t0 − τ, t∗] and satisfy ‖xt‖ ≤ r and ‖zt‖ ≤ r for all
t ∈ [t0, t

∗]. From Lemma D.2, it follows that for all t ∈ [t0, t
∗]

‖xt − zt‖ ≤
[
η(t− t0) + k

∫ t

t0

γ(|u(s)|) ds
]
eL(t−t0)

≤ ηTeLT + k‖u‖γeLT ≤
ε

2
+
ε

2
= ε.

The proof finishes by noting that if φ is the transition map of ΣR then φ(t, t0, ψ, u) =
xt and φ(t, t0, ψ,0) = zt for all t ∈ [t0, t

∗].

Appendix E. Proof of Lemma 5.2. For proving Lemma 5.2 we use the fact
that since T (·) is a strongly continuous semigroup, there exist M > 0 and w ≥ 0 such
that the operator norm ‖T (t)‖ ≤ Mewt for all t ≥ 0. We also need the following
result, which is analogous to Lemma D.2.

Lemma E.1. Suppose that the function f in (5.1) satisfies Assumption 3 and let
γ be given by (SL3). Then, for every r > 0 and η > 0 there exist L = L(r) and
k = k(r, η) such that if x(·) and z(·) are the maximally defined solutions of (5.1)
corresponding to initial time t0 ≥ 0, initial state x0 ∈ X and the inputs u ∈ U and
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0 ∈ U , respectively, and if for some time t∗ > t0, ‖x(t)‖X ≤ r and ‖z(t)‖X ≤ r for
all t ∈ [t0, t

∗], then we have that

‖x(t)− z(t)‖X ≤
[
η(t− t0) + k

∫ t

t0

γ(|u(s)|) ds
]
MeLMew(t−t0)+w(t−t0) t ∈ [t0, t

∗].

(E.1)

Proof. The following Claim, which is analogous to that in the proof of Lemma
D.2, can be proved in the same way, but using (SL3)–(SL4) instead of (R1)–(R2).

Claim E.1. For every r > 0 and η > 0, there exists k = k(r, η) > 0 such that for
all t ≥ 0, x ∈ BXr and µ ∈ U

‖f(t, x, µ)− f(t, x, 0)‖X ≤ η + kγ(‖µ‖U).

Let r > 0 and let L = L(r) be given by (SL2) in Assumption 3. Let η > 0. Let
k = k(r, η) be given by Claim E.1 and let t0, t∗, ψ, u, x(·) and z(·) be as in the
statement of Lemma E.1. For t0 ≤ t ≤ t∗ and τ ∈ [t0, t], we have that

x(τ) = T (τ − t0)x0 +

∫ τ

t0

T (τ − s)f(s, x(s), u(s)) ds

and

z(τ) = T (τ − t0)x0 +

∫ τ

t0

T (τ − s)f(s, z(s), 0) ds.

Then, using the operator bound ‖T (h)‖ ≤ Mewh for all h ≥ 0 and Claim E.1, it
follows that for all t0 ≤ τ ≤ t ≤ t∗

‖x(τ)− z(τ)‖X ≤
∫ τ

t0

‖T (τ − s)‖‖f(s, x(s), u(s))− f(s, z(s), 0)‖Xds

≤
∫ τ

t0

Mew(τ−s)‖f(s, x(s), u(s))− f(s, x(s), 0)‖Xds

+

∫ τ

t0

Mew(τ−s)‖f(s, x(s), 0)− f(s, z(s), 0)‖Xds

≤
∫ τ

t0

Mew(τ−s) [η + kγ(‖u(s)‖U)] ds+ L

∫ τ

t0

Mew(τ−s)‖x(s)− z(s)‖Xds

≤
∫ τ

t0

Mew(t−t0) [η + kγ(‖u(s)‖U)] ds+ L

∫ τ

t0

Mew(t−t0)‖x(s)− z(s)‖Xds

≤Mew(t−t0)
[
η(t− t0) + k

∫ t

t0

γ(‖u(s)‖U)ds

]
+ LMew(t−t0)

∫ τ

t0

‖x(s)− z(s)‖Xds

By applying Gronwall Lemma on the interval [t0, t], (E.1) follows.

Proof of Lemma 5.2. The proof is analogous to that of Lemma 4.2, but using
Lemma E.1 instead of Lemma D.2.
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switched systems based on weak Lyapunov functions, IEEE Trans. on Automatic Control,
62 (2017), pp. 2764–2777.

[25] A. Mironchenko, Local input-to-state stability: Characterizations and counterexamples, Sys-
tems and Control Letters, 87 (2016), pp. 23–28.

[26] A. Mironchenko, Criteria for input-to-state practical stability, IEEE Trans. on Automatic
Control, 64 (2019), pp. 298–304, https://doi.org/10.1109/TAC.2018.2824983.

https://doi.org/10.1023/A:1008356223747
https://doi.org/10.1023/A:1008356223747
https://doi.org/10.1109/TAC.2021.3099453
https://doi.org/10.1007/s00498-021-00308-9
https://doi.org/10.1109/TAC.2018.2824983


IISS CHARACTERIZATION FOR INFINITE-DIMENSIONAL SYSTEMS 23

[27] A. Mironchenko, Lyapunov functions for input-to-state stability of infinite-dimensional sys-
tems with integrable inputs, in IFAC Papers Online, vol. 53-2, 2020, pp. 5336–5341,
https://doi.org/10.1016/j.ifacol.2020.12.1222.

[28] A. Mironchenko, Non-uniform ISS small-gain theorem for infinite networks, IMA J. Mathe-
matical Control and Information, 38 (2021), pp. 1029–1045.

[29] A. Mironchenko and H. Ito, Construction of Lyapunov functions for interconnected parabolic
systems: An iISS approach, SIAM J. Control and Optimization, 53 (2015), pp. 3364–3382.

[30] A. Mironchenko and H. Ito, Characterizations of integral input-to-state stability for bilin-
ear systems in infinite dimensions, Mathematical Control and Related Fields, 6 (2016),
pp. 447–466. doi: 10.3934/mcrf.2016011.

[31] A. Mironchenko and C. Prieur, Input-to-state stability of infinite-dimensional systems: re-
cent results and open questions, SIAM Review, 62 (2020), pp. 529–614.

[32] A. Mironchenko and F. Wirth, Characterizations of input-to-state stability for infinite-
dimensional systems, IEEE Transactions on Automatic Control, 63 (2018), pp. 1602–1617,
https://doi.org/10.1109/TAC.2017.2756341, https://arxiv.org/abs/1701.08952.

[33] A. Mironchenko and F. Wirth, Lyapunov characterization of input-to-state stability for
semilinear control systems over Banach spaces, Systems and Control Letters, 119 (2018),
pp. 64–70, https://doi.org/10.1016/j.sysconle.2018.07.007.

[34] R. Nabiullin and F. L. Schwenninger, Strong input-to-state stability for infinite-dimensional
linear systems, Mathematics of Control, Signals and Systems, 30 (2018), https://doi.org/
10.1007/s00498-018-0210-8.

[35] P. Pepe, Input-to-state stability of nonlinear functional systems, IFAC Proceedings
Volumes (IFAC-PapersOnline), 46 (2013), pp. 528–539, https://doi.org/10.3182/
20130204-3-FR-4032.00066.

[36] P. Pepe and Z.-P. Jiang, A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay
systems, Systems and Control Letters, 55 (2006), pp. 1006–1014, https://doi.org/10.1016/
j.sysconle.2006.06.013.

[37] P. Pepe and I. Karafyllis, Converse Lyapunov-Krasovskii theorems for systems described by
neutral functional differential equations in Hale’s form, International Journal of Control,
86 (2013), pp. 232–243.

[38] J. Schmid, Weak input-to-state stability: characterizations and counterexamples, Mathematics
of Control, Signals and Systems, (2019), https://doi.org/10.1007/s00498-019-00248-5.

[39] E. D. Sontag, Comments on integral variants of ISS, Systems and Control Letters, 34 (1998),
pp. 93–100.

[40] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, no. 6
in Texts in applied mathematics, Springer-Verlag New York, 1998.

[41] E. D. Sontag and Y. Wang, On characterizations of the input-to-state stability property,
Systems and Control Letters, 24 (1995), pp. 351–359.

https://doi.org/10.1016/j.ifacol.2020.12.1222
https://doi.org/10.1109/TAC.2017.2756341
https://arxiv.org/abs/1701.08952
https://doi.org/10.1016/j.sysconle.2018.07.007
https://doi.org/10.1007/s00498-018-0210-8
https://doi.org/10.1007/s00498-018-0210-8
https://doi.org/10.3182/20130204-3-FR-4032.00066
https://doi.org/10.3182/20130204-3-FR-4032.00066
https://doi.org/10.1016/j.sysconle.2006.06.013
https://doi.org/10.1016/j.sysconle.2006.06.013
https://doi.org/10.1007/s00498-019-00248-5

	1 Introduction
	2 Preliminaries
	2.1 Time-varying systems with inputs
	2.2 Stability definitions
	2.3 Problem statement

	3 Main result: a characterization of iISS
	4 Time-delay systems
	5 Semilinear systems
	5.1 Semilinear systems: general results
	5.2 Semilinear systems: generalized bilinear form

	6 Conclusions
	Appendix A. Proof of Theorem 3.2
	Appendix B. Proof of Lemma 3.1
	Appendix C. Proof of Lemma 3.2
	Appendix D. Proof of Lemma 4.2
	Appendix E. Proof of Lemma 5.2
	References

