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Atómica, Rı́o Negro 8400, Argentina
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

nicolas.linale@ib.edu.ar

P. I. Fierens
Grupo de Optoelectrónica, Instituto Tecnológico de Buenos Aires (ITBA), CABA 1106, Argentina

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

Abstract: We analyze the impact of higher-order nonlinearity on ultrashort solitons by
means of a photon-conserving propagation equation, and propose an original and direct
method for its estimation. © 2020 The Author(s)

1. Summary

The propagation of pulses in waveguides is usually modeled by the generalized nonlinear Schrödinger equation
(GNLSE) [1]. However, this equation is only valid for a particular type of nonlinear profiles. To make this point
clear, let us expand the nonlinear coefficient γ(Ω) = γ0 (1+ s1(Ω/ω0)), where ω0 is the pulse central frequency
and Ω = ω−ω0 is the frequency detuning from ω0, and s1 is the self-steepening (SS) parameter. Let us recall that
if s1 6= 1 the GNLSE fails to preserve the photon number even in lossless media [2]. Furthermore, the GNLSE only
predicts physically sound results when positive zeroth-order nonlinear coefficients (γ0) are taken into account. For
negative coefficients, however, the GNLSE predicts an unphysical blueshift of short pulses [3], a problem wors-
ened when the SS parameter departs from the photon-conserving condition s1 = 1. In view of these limitations,
the GNLSE is not suitable to study the complex interplay between the Raman frequency shift and SS in ultra-
short pulses, where the influence of the SS parameter is of the utmost relevance. To tackle this issue, we have
derived a modified GNLSE, the photon-conserving generalized nonlinear Schrödinger equation (pcGNLSE) [3],
an equation that ensures strict conservation of the photon number for any arbitrary waveguide nonlinear profile.

Raman scattering is responsible for the soliton self-frequency shift (SSFS), and both the SSFS and self-
steepening lead to a time delay of the soliton [1, 4]. To point out the correlation between these two effects and the
photon-number evolution, we study the dependence of the SSFS and the photon number vs. the self-steepening
parameter, both using the GNLSE and the pcGNLSE. Results for a 25-fs, 2-kW soliton at 1550 nm, and at prop-
agated distance of 15LD, where LD is the characteristic dispersion length, are shown in Fig. 1. Fiber parameters
are β2 = −20 ps2/km, γ0 = 1 W−1km−1, and Raman parameters are those of silica [1] A direct correlation be-
tween an increase in photon number and a larger frequency shift is readily observed. Note that, as expected, when
s1 = 1 the GNLSE conserves the photon number. However, for a larger SS parameter the GNLSE predicts a slight
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Fig. 1. (left) Frequency shifts experienced by 25-fs solitons, at a distance of 15LD, as predicted by
the pcGNLSE (circles) and GNLSE (squares), and for different SS parameters. (Right) Normalized
photon-number evolution.
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Fig. 2. (left) Normalized relative time delay experienced by 10-fs solitons propagated 45LD, and for
different SS parameters and s2 = 0 ±5 ±10. Time delays are relative to s2 = 0. (Inset) Neglecting
Raman scattering. (Right) Influence of s2 in the time delay experienced by ultrashort (circles) and
short (squares) pulses. s1 =−1.5. Fiber parameters are the same as in Fig. 1

loss of photons. Since the difference is considerable smaller as compared to cases with s1 < 1, the predicted fre-
quency and time delays approach those obtained with the pcGNLSE. In physical terms, this asymmetric behavior
of the GNLSE around s1 = 1 can be explained by the presence of a zero-nonlinearity wavelength (ZNW) in the
low-frequency side of the spectrum for s1 > 0 that limits the SSFS [5].

It is important to emphasize that usually in the literature only linear γ(Ω) profiles are assumed for propagation-
modeling purposes. Some waveguides, however, exhibit a more complex frequency-dependence of the nonlinear-
ity [6]. This fact motivates the question of whether the effect of such profiles can be properly addressed with the
pcGNLSE and how it can be estimated.

Let us introduce a second order parameter s2 by letting γ(Ω) = γ0 (1+ s1(Ω/ω0)+ s2(Ω/ω0)
2). Figure 2 (left)

shows that the effect of s2 can be revealed by measurable variations in the time delay experienced by a 10-fs
soliton. For the sake of clearness, Fig. 2 (left) shows a relative time delay δT , i.e., the deviation with respect to
the delay for s2 = 0. It is worthwhile pointing out that Raman scattering acts as an enabler of the higher-order
nonlinearity. Indeed, when switching off the Raman contribution, the delay no longer depends on s2, as shown in
the inset of Fig. 2 (left).

The dependence of the time delay with the higher-order nonlinear coefficient s2 depicted in Fig. 2 (left) suggests
a way to estimate it. By extensive numerical simulations, we verified that the delay is largely unaffected by the
higher-order nonlinearity when considering 100-fs pulses. Thus, by propagating a pulse with T0 ≥ 100 fs, s1 can
be obtained from measurements of the observed time delay (see Ref. [4]). Then, propagation of an ultrashort pulse,
T0� 100 fs, s2 can be estimated from a numerical fit performed with the pcGNLSE. This method is presented in
Fig. 2 (right), where the relative time delay is shown for s1 =−1.5.

In conclusion, we have revisited the complex interplay between the SSFS and SS in ultra-short solitons in the
framework of a photon-conserving equation, the pcGNLSE. For sub-100-fs solitons, the GNLSE fails to preserve
the photon number, leading to a large overestimation of both the SSFS and the time delay. We analyzed the impact
of the high-order nonlinear term s2 on ultrashort soliton propagation and proposed an original and direct method
for its estimation.
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