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Abstract

Characterizationsf variousuniform stability propertiesof switchedsystemslescribedy differ-
entialinclusions,andwhoseswitchingsaregovernedoy a digraph,aredevelopedThesecharacteri-

zationsaregivenin termsof stability propertiesof the systemwith restrictedswitchingsandalsoin
terms of Lyapunov functions.
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1. Introduction

Recently the study of the stability properties of switched systems described by

X(1) = fory(x(0), u@)),  y(t) =h(x()), @
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with ¢ : [0, +00) — I an arbitraryswitching signalandI” the index set, has received a
great deal of attention, mainly motivated by the rapid development of the area of intelligent
control (sed8] and references therein for details). In particulaf1i®,11,4]the existence

of common Lyapunov functions for systems as in (1) was established for input-to-state
stability and other related properties.

Although under mild regularity conditions, the differential equation (1) provides for each
initial condition and each switching signal a complete description of the time evolution
of the statex(-) and, in consequence, a tractable analysis of the closed loop system (with
u(t) = k(x(1))), it lacks robustness in terms of the external disturbances and system uncer-
tainties that are inevitable in practice. In order to take into account such disturbances and
uncertainties, it is more appropriate to consider switched systems described by controlled
differential inclusions of the form

X(1) € Fouy(x(0), u(n)),  y@) =h(x(®)). &)

Systems as in (2) form a very rich class of systems which include in particular control sys-
tems defined by differential inclusions (¢£,2]) and switched systems as in (1). In recent
works[12,13], it was shown that a switched system as in (2) can be represented by a per-
turbed control system described by differential equations, driven by inputs consisting of the
controls of the original systems and perturbations that evolve in compact sets, in the sense
that the set of maximal trajectories of the system of differential inclusions is a dense subset
of maximal trajectories of the representing system. The obtained representation theorems
allowed one to extend previous results on Lyapunov characterizations of input/output sta-
bility and detectability properties for systems of differential equations to switched systems
defined by differential inclusions.

In this work we will consider systems as in (2) with switchings governed by a given
digraphH* C I' x I'. This restriction of the switchings enables us, for example, to model
the restrictions imposed by the discrete process of a hybrid system whose continuous portion
isasin (1) (se¢3,9]).

The stability properties that will be studied are formulated in the theoretic framework of
input-to-state stability (ISS). In the last decade, the notion of ISS has been generalized to
systems with outputs of the form

X)) = fx(@®), u(®), y@)=hx{@)), 3

yielding a number of useful concepts that deal with the output stability of these systems.
The different notions on input/output stability introducedlib] serve to formalize the idea

of stabledependence of outpugsupon inputau. They differ in the precise formulations of

the decay estimates and the transient behavior characteristics of the output, though they all
specialize to the ISS property when the output is the complete state.

Another important notion, thamput—output-to-state stabilitfOSS) introduced if7],
concerns thetabledependence of statgsipon outputy and inputsu. This is a notion of
zero-detectability that incorporates the effect of a disturbance input, and characterizes the
property that the information from the output and the input is sufficient to deduce stability of
the state to the origin. Although for nonlinear systems the I0SS condition cannot guarantee
the existence of a “complete” observer, it does guarantee the existence of norm observers
(se€[7]).
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Itis well understood that the existence of Lyapunov functions yields insight into stability
properties and provides powerful tools in system desigfilér/] necessary and sufficient
characterizations of input/output stability and I0SS in terms of Lyapunov functions were,
respectively, provided.

In this work we will consider the different input/output stability properties as well as the
IOSS property for switched systems as in (2) with switchings governed by digraphs. The
digraphH* imposes a restriction on the switchings, which results in a family of subclasses
of switching signals, so that a switching signal belongs to a certain subclass whenever it
takes values in a strongly connected compone#ttfThe behavior of system (2) when the
switchings are restricted to these classes plays a significant role, as it will be shown in this
work that several uniform stability properties of the system with switchings governed by
H* are equivalent to the same properties when the switchings are restricted to each of these
subclasses. Combining these results with those obtaind@jnwe will present converse
Lyapunov theorems for the input/output stability and IOSS properties for systems as in (2)
with switchings governed by digraphs.

The outline of the paper is as follows. In Section 2, the basic notation is presented. In
Section 3, we introduce the formal notion of switched systems described by differential
inclusions with a brief review of our previous results on the notions of uniform stability for
switched systems. In Section 4 we present characterizations of uniform uOLIOS, uSIIOS,
and the ulOSS stability properties of switched systems with switchings governed by a
digraph, both in terms of the stability properties of the restricted system and in terms of
Lyapunov functions for the restricted system. In Section 5 we introduce the notions of
uniform input-measurement-to-error stability and strong uniform input-measurement-to-
error stability, which allows us to deal with the ulOSS and the output stability properties in
a unified manner. Section 6 contains proofs of the results presented in the previous sections,
and some conclusions are given in Section 7.

2. Notation

Here we introduce some notations and definitions that will be used in the sequel. We
use| - | to denote the Euclidean norm for any givigft and with %, we denote its closed
unit ball, i.e., %4, := {z € R? : |z]<1}. For a normed vector spae we defing|A|| :=
sup{lld| : a € A}if A C X.

Given a metric spack, we denote byZ (E) the set of Lebesgue measurable functions
n : [0,400) — E that arelocally essentially bounded, i.e., for each compact interval
JZ C [0, +00) there is a compact subskt C E such that(r) € K for almost allr € ¢#.

For a functiong € .#(R?) we denote byjg| the (possibly infinite).Z,-norm ofg, i.e.,
llgll := ess sup{|g(#): t >0} and, for anyr >0, ||g|l{0.,; Stands for theL.Z -norm of g
restricted to the intervdD, ¢], i.e., [|g|lj0,;] := €SS sup{|g(s): 0<s <t}

Let X be a metric space. We denote the distance from a gointX to a setA C X by
dist(&, A). TheHausdorff distancdetween two nonempty closed subsetxXofA andB,
is defined agh (A, B) := max{sup:.cp dist(¢, A), SURea dist(n, B)}.

We denote by (X) the set of nonempty compact subsetsXadnd we recall that the
Hausdorff distancely is a metric on#"(X). Given another metric space we say that
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a set-valued ma : Z — 2 (X) is locally Lipschitz if it is locally Lipschitz when the
Hausdorff distance is considered.#i(X).

As usual, by a#"-function we mean a function: R>o — Rxthatis strictly increasing
and continuous, and satisfie®) =0, by a7« -function one that is in addition unbounded,
and we let?"# be the class of functionR>o x R>o — R0 which are of class?
on the first argument and decrease to zero on the second argument. A continuous function
V : R" — Ris positive definite if (0) = 0 andV (¢) > 0 for all £ # 0; and is radially
unbounded if it is proper, i.e., {£ : V(&) € A} is compact wheneveXk is compact.

3. Stability of switched systems

In this work we consider switched systems whose subsystems are described by forced
differential inclusions. More precisely, given a family of locally Lipschitz set-valued maps
P =(F : R" xR" - A (R"), y € I'}, wherel" is an index set and, without loss of
generality,F, # F, if 7 # 7/, and given a locally Lipschitz output-map: R" — R?,
with 2(0) = 0, we consider the switched system with inputs and outputs

x € Fg(x,u), y=h), 4)

wherex takes values ifR", u € % := .4 (R™), and theswitching signab : [0, +00) — I’
is a piecewise constant function. Associated with each switching sighate are a strictly
increasing sequen({a}fvz“o, with Ny < o0, 1o =0, and lim_,  t; = o0 when~N,; = oo, and
a sequence of indexé;a,.}f‘]:"o C I', with y; # y;,4 forall 0<i < Ny, such that (1) = o;
forally; <r <ti41 with 0<i < Ny, anda(t) = oy, for all 1 > 1y, whenNy is finite. We will
denote by¥ the family of switching signals of a given switched system and/hy ™) the
subclass of switching signals that takes values in a subiset I'.

Given an inputz € % and a switching signat € %, we say that a locally absolutely
continuous functiorx : .# — R" where.# =[0,T] or [0, T) withO<7T< + o0 is a
trajectory of (4) correspondingo u € % and toc € ¥ if x(t) € Fo)(x(2), u(t)) a.e.

t € .. Observe that, due to the assumptions alfoufor eachl € R", eachu € % and
eachs € &, there always exists a trajectorycorresponding ta and tog that verifies
x(0) = ¢ and that is defined on an inten@l T') for someT > 0 small enough. A trajectory
x corresponding ta € % and tos € . is calledmaximalif it does not have an extension
which is a solution corresponding toand tog, i.e., if [0, T}) is the interval of definition
of x, eitherT, = +oc or there does not exist a trajectary [0, T) — R" corresponding to
u and too with T' > T so thatz(t) = x(¢) for all t € [0, T}).

For any¢ € R", any u € % and anys € %, we denote with7 * (&, u, o) the collection
of all the maximal trajectories of (4) corresponding to and toe that satisfyx (0) = £.

We will say that system (4) i®rward completavith respect to a subclass of switching
signals¥p € & if every maximal solutionx € 7°(&, u, o) corresponding to any initial
conditioné € R", any inputz € % and any switching signal € % is defined for alk >0,
i.e., T, = co. We just say that system (4)fierward completavhen it is forward complete
with respect ta7. It is not hard to see that (4) is forward complete with respect'td™)
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if and only if & € F,(x, u) is forward complete for each paramefee I'*. To derive the
main results of this work, we assume the following:

e C1:ThefamilyZ is uniformly locally Lipschitz, i.e., foreacN € N, there existéy >0
such that

dr(Fy (& ), Fy(& i) <IN(E =&+ lu— ')
forall (¢, w), (&', 1) e N3, x NB,, andally e I'.

e C2: The familyZ is pointwise equibounded, i.e., for ea@h u) € R" x R™ there exists
M ¢ ) >0 such that

17, wI<Me,,y Vyel.

Remark 3.1. We observe that AssumptiosL andC2 are trivially satisfied wheid' is a
finite set.

Below we briefly review several results on stability properties for switching systems
developed if13].

Definition 3.2. Given a subclass of switched signaty < %7, system (4) isuniformly

input—output-to-state stable with respect# (UIOSS w.r.t.%p) if there exist a function
p of class#” ¢ and functions: and0 of class#” such that

[x (@) <BAEL 1) + Oyl + allullo) VYt €0, Ty), (%)
forallé e R*,allu € %,allec € Yoand allx € 7°(, u, o).

Definition 3.3. Given a subclass of switched signafy C ¥, a system as in (4) is

e uniformly input—output stable with respect 6o (UIOS w.r.t. %), if it is forward
complete w.r.t¥g and there exist a functiof of class#" ¥ and a functiorny of class
A" such thatforalt e R*, allu € %, alle € Yoand allx € 7°(&, u, o),

IyOI<BAEL ) + y(llul) Vi =0; (6)

e uniformly output—Lagrange inputto output stable with respeéftduOLIOS w.r.t.. %)
ifitisulOS w.r.t. .%o and there exist som# -functionss1, o2 such that for alt € R",
allu e #,alloc € oandallx € 7°(, u, ),

lyM1< maX{ar(lh(OD, o2(llul)} V120 7

o uniformly state independent input—output stable with respetdquSIIOS w.r.t.% )
if it is forward complete w.r.t%y and there exist a functiofi of class.#".¥ and a
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functionu of class#” such that the following holds:

lyOI<BURDL ) + alllul) V120, (8)

forall ¢ e R", allu € %, alle € Ypand allx € 7°(&, u, o).

Remark 3.4. Note that by causality, the same estimates (6), (7) and (8) will result if one
replacediu|| by |lulljo,/]. Also, by causality, equivalent definitions of the properties of ulOSS,
ulOS, uOLIOS and uSIIOS (w.r¥) will be obtained if one considers only inputs with
finite norm instead of inputs i#.

Remark 3.5. Itwas shown if15] that for any#”.#-function g and any#"-functiona there

are a%/'f-function’ﬁ\ and ax"-functiony so that miro(s), f(r, t)} gﬁ(s, t/(14+75(r))) for
all s, r, t. It follows that a system is uOLIOS w.rt if and only if there exist a functiofi
of class#” % and two functiong andy of class#” such that

Iy(t)lsﬁ(lh(é)l, + p(Jlull) forall r>0, (©)]

t
1+P(|§I))

forallé e R", allu e %,allc € Ypand allx € 7°(, u, o).

We note that the stability properties introduced in Definitions 3.2—3.3 are natural ex-
tensions of those given, respectively[#} and[16] for systems described by differential
equations.

Various stability properties are particular cases of these ones. For example, for systems
without inputs, the global asymptotic stability of the system with respect to a forward
invariant seteZ is equivalent to the SIIOS property, if we consider as output m@Ep =
dist(¢, .«7). The well-known ISS property is also a particular case of these properties. In fact,
if we consider as output map &) = 0, then the I0SS property becomes the ISS property.
On the other hand, if we conside(¢) = &, then both the SIIOS and the IOS properties are
equivalent to ISS.

In our previous worK13], we have shown the following:

Lemma 3.6. Assume that Assumptio@4—C2hold for systen{4). Suppose, (0, 0) = {0}
forall y € I'. Then the system is ulOSS w.#4(I') if and only if there exists a smoot*)
functionV : R" — R, called a common ulOSS-Lyapunov function w¥i.I"), such
that

e for some 4 -functionsoy, o2,

a1 (IEh <V <o2(ll]) VEe R (10)

e for somex -functiono and.#"-functionso1, o2

DV(Ov< —a(lE) + a1(1h(O]) + o2(lu) Ve R,

forall u e R",all y e I'and allv € F, (&, w).
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For the Lyapunov characterizations for the input/output stability properties, we need the
following:

Definition 3.7. A system as in (4) isiniformly bounded input bounded state stable with
respect to¥ o C . (UBIBS w.r.t. &) if there exist some nondecreasing functiensand
oz suchthatforall €e R, allu € %, allo € Ypand allx € 7°(&, u, o),

Ix(O< max{ay(l]), o2(llull)} Vr=0. (11)

As shown in[13], if a system as in (4) is uBIBS w.r.i&¥g, then it is forward complete
w.r.t. %o.

The following was obtained ifiL3]:

Lemma 3.8. Suppose syste) is uBIBS w.r.t.7(I).
1.The system is ulOS w.r¥ (I') if and only if there exists a smooth functitn: R" —
R > o such that

e forsomexy € A oo, 002 € H oo,
ar(|h(OD <V O <aa(lE]) VEe R, (12)

o for somey € A4 o, andaz € A ., the following holds for alé € R", all u € R™, all
yel'andallv e F, (&, p):

V(O 27D = DV(Ov< — ag(V(Q), ). (13)

2. The system is uOLIOS w.r# (I') if and only if there exists a smooth functidn:
R" — R such that

e forsomeuy, oo € A oo,

a1 (NS V(O <o2(|h (D) VEe R, (14)

e for somey € # o, and somexz € "%, (13)holds for allé € R", all p € R™, all
yelandallv e Fy(&, p).

3.The systemis uSIIOS w.e£(I') if and only if there exists a smooth functign R" —
R > o such that

e for someus, ap € A4, (14)holds;and
e there existiz € # o andy € # o such that

V(O = x(ul) = DV (v < —az(E]) (15)
forall ¢ e R", all pe R",ally e I'and allv € F, (&, p).

The functionV as in Lemma 3.8 is called a common ulOS- uOLIOS- and uSIIOS-
Lyapunov function w.r.t% (I'), respectively.
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4. Systems with switchings governed by a digraph

In this section we consider switched systems whose switchings are governed by a given
digraphH* C I' x I'. More precisely:

Definition 4.1. We say that a switching signalis anadmissible switching signaf and
only if (a(;), o(t;1+1)) € H* forall 0<i < Ng.

We denote byVadmthe class of all admissible switching signals.

Remark 4.2. Observe that if we consider the set-valued ntap I' — 2!, defined by
H)=1{y: (y,7) € H*}, then we have that € #29™if and only if 6(t; 1) € H(c(t;))
forall 0<i < Ng.

Our main concern is to characterize under suitable hypotheses the ulOSS, ulOS, uOLIOS
and uSIIOS properties of system (4) with switching signals constrained®t". Some
terminology and results from graph theory will be used (§¢or details).

Giveny, y" € I', we say that is accessiblgfrom y if there exists a finite sequence
Y="70 .-, Vx =7 With k € No such thaiy;, ;1) € H* forall 0<i < k. In other words,

Vip1 € H(y;) for all 0<i <k. Then, if we consider ird” the relation defined by ~ )’

if and only if y is accessible frony’ andy’ is accessible from, it follows that this is an
equivalence relation and that its equivalence classes are the so-called strongly connected
components of the digrapi™*. Throughout this work, we assume the following:

e C3: The digraphH* has a finite number of strongly connected compongnss. ., I'y.

Theorem 1. Suppose that Assumptio@d—C3 hold for systen(4). Then the following
statements are equivalent:

1. Systen{4) is ulOSS w.rty2m
2. Systent4) is ulOSS w.rt¥(I';) for eachi € {1, ..., N}.

For the input/output stability properties, we first have the following:

Lemma 4.3. Suppose Assumptio@d—-C3hold for systen{4). Then the system is uBIBS
w.rt. 29t and only if it is uBIBS w.rt&(I';) foreachi = 1,2, ..., N.

The proof of Lemma 4.3 will be given in Section 6.2.
Theorem 2. Suppose that Assumptio@4—C3 hold for systen{4). Assume further that

the system satisfies the uBIBS property wef9™ Then the following statements are
equivalent:

1. Systen{4) is uOLIOS(uSIIOS respectively.r.t. 5724
2. Systent4) is uOLIOS(uSIIOS respectivelyw.r.t. & (I';) for eachi € {1, ..., N}.
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The significance of Theorems 1 and 2 is that they reduce the stability properties of a system
as in (4) with switchings governed by a digraph to the corresponding stability properties
of the system with switchings taking arbitrary values in some given subsétsTdfis will
allow one to apply the previous results for systems with switchings taking arbitrary values
to obtain the Lyapunov characterizations for systems whose switchings are governed by a
digraph.

The implications 1= 2. of Theorems 1 and 2 follow from the following approximation
result:

Lemma 4.4. Suppose that Assumptiod—C2hold. LetI™ be a strongly connected com-
ponent of the digraptiZ* and letx € 7°(&, u, o) withé € R*, u € % ando € (I'").
Then,given0 < T < T, and ¢ > 0 there exists a trajectory* € 7 °(&, u, 6*) with ¢* €
F3M gych thatT,- > T and

lx(t) —x*(1)|<e VTel0,T]. (16)

The proof of Lemma 4.4 will be given in Section 6.1.

4.1. Some remarks about the ulOS case

It is not hard to prove under Assumptio84—C2, by using Lemma 4.4, that if a system
is UlOS w.r.t#2Mthen it is ulOS w.r.t (I'*) for any strongly connected componérit
of H*.

Unfortunately, in contrast to the results on the uOLIOS and uSIIOS stated in Theorem 1,
the ulOS property w.rt7’(I';) for 1<i < N does notimply the ulOS property WL rg2dm
even when the system satisfies the additional hypothesis of being uBIBS stable, as shown
by the following counterexample.

Example 4.5. Consider the switched linear system without inputs
X(1) = Agnyx(t), y=ux2(t), (17)

wherex (1) = (x1(1), x2(1)) € R?, a(t) € I' = {1, 2} and

0O O -1 0
A1=|:o _1i| and A2=|: 1 _1i|.

ConsiderH* = {(1, 2)}. Then the strongly connected componentg&dfarel’y = {1} and
I'> = {2}. We observe that each subsystém A;x, y = x2,i =1, 2, is output stable (OS)
(and in consequence 10S). We also observe that, from the fact that the derivative of the
positive definite and radially unbounded functign(x) = xf + x§ along the trajectories
of (17) is semidefinite negative, it follows that the trajectories of (17) are bounded by a
2 -function in the initial values (and in consequence the system is uBIBS).

We claim that (17) is not uOS w.it24™ (and in consequence it is not ulOS wgf9™).
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Suppose, on the contrary, that system (17) is uOS #34™ Therefore, the following
straightforward consequence of the uOS property holds.

(x) Given a sequencgri, k € N} of admissible switching signals ai@ < R2, if yi
is the output of (17) corresponding to the switching signablnd the initial condition
x(0) = &g, theny,(r) — 0 ast — +o0 and the convergence is uniform with respect to
k e N.
Now, consider the sequence of admissible switching sigaglsk € N}, with gy (1) =1
for 0<t <k and oy (¢t) = 2 for t >k. Let y; be the output of (17) corresponding to the
switching signab; and the initial conditior(x1(0), x2(0)) = (1, 0).
An easy computation shows that

(1) = 0, 0<1t <k,
Y=V e t=h, >k

Thus, yx(k + 1) = e 1 for all k € N and the convergence of (¢) to zero is not uniform
with respect tck, which contradictgx). This fact shows that (17) is not uOS w.i€29™.

The following sufficient condition for the ulOS W.r.5729m of system (4) is a simple
consequence of Theorem 1.

Proposition 4.6. Suppose that Assumptio@4—-C3hold for a uBIBS systeif#). Assume
that there exists a continuous functibg : R* — R ¢ such that the following hold:

1. for someX . -functiony it holds that

[R(OI< x(ho($)) VE e RY
2. system(4) with outputy = ho(x) is UOLIOS w.r.t.#(I';) for eachi € {1, ..., N}.
Then the system is ulOS w.i9™,

Remark 4.7. We observe that hypotheses 1 and 2 of Proposition 4.6 establish that system
(4) is uOLIOS under output redefinitiow.r.t. & (I';) for eachi, (see[15]) and that the
redefined output functiohg is the samdor all the switched subsystems.

As a matter of fact, by using the results[@B], one can show for eadhe {1, ..., N}
the existence of a continuous functiép such that system (4) with outpwt= %;(x) is
uOLIOS w.r.t. #(I';). The extra assumption made in Proposition 4.6 is that there is a
common output redefinitiohg valid for all 1<i < N.

4.2. Lyapunov characterizations
In this subsection we characterize, in terms of Lyapunov functions, the ulOSS and the

uniform output stability properties of switched systems with switching governed by a
digraphH*.
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Theorem 3. Supposehat AssumptionsC1-C3 for system(4) hold. Assumethat F.,(0,

0)= {0} for all y € I'. Thenthe systemis ulOSSw.r.t. 29™if and only if there existsa
common ulOSS-Lyapunov functionat.t. & (I;) foreachi=1,..., N.

Theorem 4 . Supposéhat Assumptions€1-C3 for system(4) hold. Assumdurther that
the systerris uBIBSw.rt. #29M Thenthe systerris uOLIOS (uSIIOS respectively w.r.t.

F24Mif and onlyif thereexistsa commoruOLIOS-Lyapunofunction(uSI1OS-Lyapunov
function respectively V; w.r.t. & (I;) foreachi=1,..., N.

Theorem3 is a straightforwardapplicationof Lemma3.6 andTheoreml. Theorenm is
a consequencef Lemma3.8, Theoren? and Lemmat.3.

FortheulOS casewe havethefollowing asa consequencef Propositiord.6,Lemmas
3.8and 4.3.

Proposition 4 .8. Supposehat Assumption€C1-C2 hold for system(4). System(4) is
uloSw.rt. #29M if it is uBIBSw.rt. #(I;) for i = 1, ..., N and thereexistsa contin-
uous function § : R* — R that verifies the following

e there exists a functiop of class# "« such thatz(&)| < y(ho(&)) for all £ € R";
e system(4) with output mapig admits a common OLIOS-Lyapunov functignw.r.t.
S ([;) foreachi =1,..., N.

5. Input-measurement-to-error stability

To provide a unified proof for the implications2: 1. of Theorems 1 and 2, we consider
a system as in (4) with two output maps

y(@) =h(x(@), e(r)=gx (), (18)

whereh : R* — R? andg : R" — R? are continuous maps. Typically,denotes the
output variables that can be measured, @addnotes the output variables to be regulated.

Definition 5.1. Let a subclass of switched signal§, € % and a system as in (4) with
output maps (18) be given. We say that the systamii®rmly input-measurement-to-error
stable w.r.t.%o (UIMES w.r.t. ¥p) if there existf € "%, 0 € 4 anda € 4 such that

leI<BUEL ) + 0y lio) + alllullo,n) Ve € [0, Tx) (19)

holds for allé € R", allu € %, all6 € Ygand allx € 7°(&, u, o).

The ulMES notion is a generalization of the ulOSS and the output stability properties.
It was introduced irf5] for systems without switchings, where some primary work was
developed for the Lyapunov characterizations for the special case when there is no input
acting on the system. In order to complete the proofs of Theorems 1 and 2, we will consider
the following stronger variation of the ulMES notion.
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Definition 5.2. Let a subclass of switched signals, C . and a system as in (4) with
output maps (18) be given. We say that the systestramgly uniformly input-measurement-
to-error stable w.r.t%g (strongly ulMES w.r.t.%p) ifthereexistp € 4" £,0 € A ,0. € A~
and a continuous, nondecreasing and nonnegative definite fumcti®y. o — R such
that

)| <B (lg(é)l, ) 0y lop + (o) (20)

t
e N()

holds for allé € R*, allu € %, all6 € Sgand allx € 7°(¢, u, o).

As in the UIMES case, the strongly ulMES property requires the magnitude of the error
output to be eventually small if the norms of the input and the measurement output are small.
On the other hand, strongly uIMES is stronger than uIMES in the sense that it requires the

“overshoot” ofe(¢) to depend only one(0)|, while in the uIMES case, the overshoot is
merely required to be dominated bj.

Remark 5.3. The strongly ulMES notion will enable one to consider the ulOSS and the

input/output stability properties in a unified approach: ulOSS is the special case when

k(s) = 0and wherg (&) =£ (i.e., when the outpudrepresents the full set of state variables);
and for a forward complete system, uOLIOS is the special case wkef, which further
results in uSIIOS wher(s) = 0.

The following is a robust version of the input—output-to-state boundedness property

introduced in1]:

Definition 5.4. Leta subclass of switched sigh&% C . and a system as in (4) with out-
put maps (18) be given. We say that the systemmiformly input—output-to-state bounded
w.r.t. y (ulO-BND) for % if there existog € 4", 0, € 4 andg, € # such that

[x ()| < maxX{ao(|<]), ay(lIyllo.s), oulllulon)} Vit el0,Ty) (21)
holds for allé € R", allu € %, all6 € Ygand allx € 7°(&, u, o).

Lemma 5.5. Suppose that Assumptio@4—-C3hold for systen{4) with the output maps
givenin(18).Then the system is ulO-BND w.r.t. yf?ﬂadmif and only ifitis ulO-BND w.r.t.
y for #(I';) for eachl<i < N.

The proof of Lemma 5.5 will be given in Section 6.2.

Theorem 5. Suppose that Assumptio84—C3 hold for systen{4) with the output maps
given in (18). Assume that the system is ulO-BND w.r.t. y 679" Then the system
is strongly ulIMES w.r.t.24M if and only if it is strongly UIMES w.r.t¥’(I';) for each
1<i<N.



484 J.L. Mancilla-Aguilar et al.

To prove Theorem 5, we associate with a given switching signat 524M the
subsequence{r,}f;o of the switching sequenct{etk},’{vgo, whose elements verify the
following:

e 70=0;
e foreachl =0, 1, ..., there exists a connected compongptsuch that (1) € I';, for
all . € [t, 1y11) ando (1) ¢ 1,

Thatis, 0=10 < 11 < 12 < - - - are the switching moments wherswitches from a value in
one connected component to a value in a different connected component.

Lemma 5.6. Suppose that Assumpti@8 holds. Then for each € 29 L, <N — 1.

Proof. For N = 1 the result is clear. Suppose théat>1 andL, > N; then there exist two
integers G<i* <i* 4+ 1< j*< L, such thatl’;, =TI ,.. Thusao(z;+) is accessible from
a(t;+4+1) becauser is an admissible switching signal. On the other hand, sirieg) <
i, = Fij*, it follows that o(;+) is accessible fronw(z;+), which implies further that
o(ti+41) is accessible frona(z;+). Consequentlyg(ti«11) € I';,,,which contradicts the
definition of the sequende;}. O

Proof of Theorem 5. The necessitypart (the “only if” part) of the theorem is a direct
consequence of Lemma 4.4. Below we show the sufficiency part.

Assume that the system is strongly UIMES w.tA(I;) for 1<i <N andN is finite.
Without loss of generality, we assume that there gxist " ¥, 0 € # «, o € K » and
a nondecreasing and nonnegative definite continuous functoich that for all i < N,
EeRYuelU, o ¥I;)andallx € 75, u, o).

le()| < max{ﬁ (Ig(f)l, > , 0y llo.n) Of(llull[o,t])} Vi € [0, Ty).

(22)

t
14 x(IED

Let Sy(s) = B(s, 0). Without loss of generality, we assume tifigts) > s for all s >0.

Lemma 5.7. Consideré € R*, u € %, 6 € 9 andx € 7°(, u,0). LetO<t < T,
and let k be the greatest nonnegative integer suchthat:. Then

le(r)| < max{ S5 (g (), B 0 0ClIy 0., B o allulijo, )}, (23)
wheref3(s) = s, and 5" = By o i for 1 >0.

Proof. We will prove it by induction ork. The case ot = 0 follows directly from (22).
Assume now that (23) holds féar— 1 with £ > 1. This means that

le(x)| < max{fE(1g(E)D, B o 0lvllo.), 5 o alllullo, o)
VT € [Tk—1, Tk)- (24)
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Letri=1—14, &1 =x (1) andu1, o1 andx1 be defined byi1(t)=u(t+7¢), o1(r) =0 (t+1%)
andx1(t) =x(t+ 1), e1 = g(x1), andys = h(x1). Thenxs € T° (&1, u1, o1) with Ty, > 11
ando1(t) € I';, forall T € [0, 11]. Hence,

lex (D) < maxX{Bo(lg(EDD), O(llyalljo.c), x(lluallo,.)} VYVt €[0, 1] (25)
Then, it follows from (24) (by letting — 7%) that
Bolg(CD)) = Polle(Ti)])
< max(Bg (18O By o 0y lom1). Boo elllullio,)}-
Combining this with (25) together with the fact that) = e1(¢1) (and noticing thaﬁ’c‘, )
@(s) = @(s) foranyp € %), we get (23). O

We now continue with the proof of Theorem 5. Lete R", u € %, ¢ € 2™ and
x € 7% u,0). Fixt € [0, Ty). Leta = ||y|lj0.11, b = llull{o.s] @nd consider the partition
of [0, ] given bylg = [70, 1), . . ., Ix—1 = [Tk—1, Tk), Ix = [Tk, t] with 7, <¢. By Lemma
5.6,k <N — 1. Consequently, at least one of these intervals /salgas length equal to or
greater tham/N, and from Lemma 5.7,

le(z/)| < max{ Byt (1g(&)), Bl o O(a), Bl o a(b)}
<max(By (1), By Lo 0(a), Byt o a(b)).

Arguments similar to those used in the proof of Lemma 5.7 show that, in the case when
Jj <k,

le(tj+1)| < max{ﬁ (|g(éj)|7 m) , 0(a), ac(b)}
J

N
< max{ﬁ (ﬁév (Ig®D, #m) LBy 0 0(a), BY o oc(b)} : (26)
J

where we have lef; = x(t;), and in the case whep= k,

le()| < max{ﬁ <|g(fj)|, m) , 0(a), Oﬂ(b)}
j

N
< max{ﬁ (ﬁév(lg(é)l), #M) LBy 0 0(a), B o oc(b)} :
> ]

Since from the ulO-BND property we have

k(I€;1) < maxX{x o ao([<]), ko ay(a), ko 6y (D)},

it follows that for anyr > 0,

(/N t/N t/N
) A 4 Geewerrer) R G ewrr)

t/N
ﬂ(r’ 1+Koau(b)>}'
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Considering the two cases whei s andr < s, we see that for anyiff—functionﬁ,

E(r, 1—ti-s) < max{/ﬁ\(r, 1—t|—r) ,/E(S,O)}.

Hence, withB(r, 1) := B(BY (r). 1), we get

—~ t/N -~ t/N ~ t/N
ﬁ(” 1+x(|é,,~|>) gmax{ﬁ(” 1+Ko_go<|é|>)’ﬁ(” 1+r)’

Eooxoay(a),ﬁooxoau(b)}.

Combining this with (26), we get, for the case wher k,

—~ N
le(Tj+1)| < max{ﬁ (|g(é)|, 1+Kt£—0’0(|5|)> ’
t/N

ﬁ(|g(f)|,m)ﬂ'y(a),au(b)}, (27)

whereg, ands,, are functions of clas¥”, that verifya, (s) < max{ﬁoo;coay (s), ﬁévoﬁ(s)}
anda, (s) < max{fiy o k o g, (s), By o a(s)}, respectively. Let

B, s) = max{ﬁ(r, s/N), B (r, %)} .
Then, (27) yields, in the case whgn< k,
~ ! R Y
le(Tj+1)] < max{ﬁ (|g(f)|, m) , oy(a), Uu(b)} . (28)
Similarly, for j = k, we have
~ 1 Y e
le()| < max{ﬁ (Ig(f)l, l+Ko—0'o(|§|)> , oy(a), Gu(b)} . (29)

In the case that < k, it follows from Lemma 5.7 that

le(t)| < max{fy (g (x(tjs)), By o 0(a), Byt o ab))

< max{ﬁ* <|g(f)|’ m) ,0%(a), OC*(b)} )

wheref*(r, 1) = ﬁg(ﬁ(r, 1)), and

0%(r) = max(By o Gy(r), By 0 0(r)}, o (r) =max{fy o Gu(r), B o a(r)}.
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Combining this with (29) for the case whegnr=k, and taking into account the definitions
of aandb, we get

le()] < max{ﬁ* (Ig(é)l, ) Oy lho.), OC*(H“”[O,t])} :

1+ ko ao(l<)

We complete the proof by noting théit € 4%, 0* € A4, o* € A andioagis continuous
and nondecreasing.[J

Remark 5.8. It can be seen in the proof above that the ulO-BND condition is redundant
whenk(s) = 0 in (20), since in this case, estimate (20) can be reduced to

leI< B, 1) + O0Iyllo) + x(lulljo,p), 0Lt <Ty. (30)

Accordingly, one can derive (29) from (26) without using the ulO-BND condition.

6. Proofs

In this section, we provide proofs of Theorems 1 and 2 and some lemmas used in the
paper.

6.1. Proof of Lemma 4.4

Takeo € I'*, and Iet{t,-};\':”O be the sequence of switching timesooénd lety; = o(1;).

Consider the greatest nonnegative integsuch thaty, <7. As 7y, ..., 7, belong tol'™*
then, for each integer@ [ <k, there exists a sequenﬁ;glzy?, y,l, e yl]’ =y, of elements
j+1

of I'* such that; "~ H(y,j) forall j=0,..., j; — 1.
Then, if we consider fog, = 1/n, with n € N large enough, the switching signa|
defined by

Ny Wrelngn—Gi—De), I=1,....k,

"j H _ o _ s s . _
ont)= 1" "f tely (.Jl Denstt — Gr—j—Den), 1=1,...,k, (31)
j=1 ..., 5—-1,
Vi if t>1,

we have that, € 5729m
Claim. There exists a sequence of maximal solutionsn € N} of (4) so that:

(i) x, € 7°(&, u, 0p) andTy, > T, for n large enough;
(ii) {x,} converges uniformly to x o, 7].

Proof. As AssumptionsC1-C2hold, it follows from Lemma 2.5 and Remark 2.6 [8]
that there exist an injective functian: I' — D, with D a compact metric space, and a
set-valued maF : R" x R™ x D — % (R") such that any € 9°(&, u, 0) is also a
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maximal solution ofc € F (X, u, d,) with initial condition &, corresponding ta and to
s =100 € .M (D).

If we consider now, for each € N, d, = 1 o g,,, then the family{d,, n € N} is locally
equibounded and, in addition, ljm « d,(t) = ds(7) a.e. on[O, fx41) if k < N4y Or on
[0, +00) if k = N,.

Let us define, for any >0, anyn € R" and any € D the set-valued ma@(t, 1, v) :=
F(n, u(z), v). It follows thatG verifies the hypotheses of Lemma 3.758] and thatx is a
maximal solution of the forced differential inclusion

;e G, z,d), (32)

corresponding t@l = d;. Then according to Lemma 3.7 3], there exists a sequence
{x, : n € N}, with x, a maximal trajectory of (32) corresponding dg that verifies
x,(0) = ¢, andT,, > T for n large enough. In additior{x,} converges uniformly ta in
[0, T]. But, according to Remark 1.4 2] and the definition of5, x,, € 7°(&, u, g,),
and hence the claim follows.[]

6.2. Proof of Lemmas 4.3 and 5.5

Lemma 4.3 is a corollary of Lemma 5.5 wilt{¢) = 0. Below we prove Lemma 5.5.
The necessity of Lemma 5.5 follows from the approximation result Lemma 4.4. In what
follows we prove that if system (4) is ulO-BND w.ntfor & (I';) for eachi € {1, ..., N},
then it is ulO-BND w.r.ty for &/29™m
Due to Assumptiol©3, we may assume that there exjsts .#" such thatforall Ki < N,
lx @< maxu(<D), ullylion), ulllulon)}, 0<z<Tx, (33)

forallé e R"allu € %,alloc € & (I';)and allx € 77 (¢, u, o). Without loss of generality,
we assume that(s) >s for s >0. As a consequencg’ > i/ whenn > j.

Consideré € R", u € %, ¢ € ™ andx € 7° (&, u, ). We will prove the lemma by
showing the following:

Ix ()] < max{z™ (€D, 1Y Uyl 1 Ulullio,n)}, Ve =0. (34)

In order to prove this claim let, as in the proof of Theorerk Be the greatest nonnegative
integer such that; <t. Then

lx ()| < max{u! (1€D), 1 Iy lho,)s & (lullo,)} Veelrj—1, 1), 1< j<k.  (35)

We prove (35) by induction ojpthe casej = 1 is a straightforward consequence of (33).
Suppose that (35) holds fgr— 1. Then, from (35) and the continuity &f we have that

lx(z )1 < max{/ 71ED, 1w~ Ay lo.)s W ~ lullio, )}
Vieltj1,1;), 1<j<k.

By the same argument used in the proof of Lemma 5.7, we have dd0, 711 — 7;),

lx(zj + Dl < max{u(&; D). udlly;llo.e)- wlu ;o)
< maxue! (1€1). 1/ 1yl 2/ (lullio.n},
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where we have le€; = x(t;), x;(t) = x(t; + 1), y; = h(x;) andu;(t) = u(tr; + 7).
The induction is thus completed. Applying the ulO-BND estimate (34) once more with the
estimate (35) witly = k, we get

e ()1 < max{f D, @y o), W lulio,n))-

Estimate (34) is thus proved by noting that N — 1.

6.3. Proof of Theorems 1 and 2

It follows from the following facts that Theorems 1 and 2 are consequences of Theorem
5. Let.% be a subclass of.

1. A system as in (4) with the output map= %(x) is ulOSS w.r.t.¥g if and only if it is
strongly ulIMES w.r.t.%¢ as in Definition 5.2 withg (¢) = €. Also, note that if this is the
case, then the ulO-BND condition follows from the ulOSS property.

2. A system asin (4) is uBIBS w.rt/g if and only if it is ulO-BND w.r.t.y for #p asin
Definition 5.4 with the output map(¢) = 0.

3. Aforward complete system as in (4) with the output raapg (x) is uOLIOS w.r.t.%g
if and only if it is strongly uIMES w.r.t.%g as in Definition 5.2 withz(¢) = 0.

4. A forward complete system as in (4) with the output mapg(x) is uSIIOS w.r.t.%p
if and only if it is strongly uIMES w.r.t.%g as in Definition 5.2 withz(¢) = 0 and
K(s) = 0.

6.4. Aremark about the uSIIOS property

As indicated in13], the uBIBS condition in the uSIIOS-Lyapunov characterization (c.f.
Lemma 3.8) can be replaced by the forward completeness condition. Remark 5.8 also
indicates that the uBIBS condition is redundant in the statement of Theorem 2 about
the uSIIOS property. In order to state the results about uSIIOS without assuming the
uBIBS condition, we need to introduce the notion of Zeno switching signal.

We say thatr : [0, +00) — I is aZeno switching signaf there exist a sequence of
real numbergs, k € No}withO=rg<t1<-- <ty <---and lim_ oo tx = Ty < + 00,

a sequencegy, € I',k € No} with y, # vy, for all k>0 and a point* e I" such that
a(t) =y, forall 1 <t <41 ando(r) = y* for all 1 > T5,.

The definition of trajectory and maximal trajectory of (4) whets a Zeno switching
signal is the same as in the case in whidh a piecewise constant one (28] for details).

We denote by 7 the set of all (piecewise constant) switchings and all Zeno switchings
taking values inl” and we say that system (4) is forward complete with respeéf toif
every maximal trajectory of (4) corresponding to any initial conditiafn any inputu and
anyg € %z is defined for allr >0. We observe that any uBIBS switched system is, in
particular, forward complete w.r.t/ ;.
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Proposition 6.1. Suppose that Assumptio@4—-C3 hold for systen{4). Assume that the
system is forward complete w.t¥ 7. Then the following hold:

1. The system is uSIIOS w.i29™Mif and only if the system is uSIOS w.it(I';) for all
1<i<N.

2. The systemis uSIIOS w.i29Mif and only if there exists a common uSIOS-Lyapunov
functionV; w.r.t. #(I';) forall 1<i<N.

7. Conclusion

In this paper we have studied different types of uniform stability properties of switched
systems defined by differential inclusions with inputs and outputs. For such a switched
system whose switchings are governed by a digraph, we have shown that, under suitable
hypotheses, the stability properties are equivalent to the corresponding stability properties
for the system when the switching signals are restricted to take arbitrary values in the
strongly connected components of the digraph. As a consequence, we obtained Lyapunov
characterizations, under suitable hypotheses, for the stability properties for systems with
switchings governed by a digraph.
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